
C. Varela 1

Typing, Parameter Passing, Lazy
Evaluation

Dynamic and Static Typing (EPL* 4.1-4.4, CTM 2.8.3)
Parameter Passing(CTM 6.1-6.4.4)

Lazy Evaluation (CTM 4.5)

Carlos Varela
Rensselaer Polytechnic Institute

November 25, 2014

Partially adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

* Essentials of Programming Languages, by Friedman, Wand, and Haynes, MIT Press

C. Varela 2

Data types
•  A datatype defines a set of values and an associated set of

operations
•  An abstract datatype is described by a set of operations
•  These operations are the only thing that a user of the

abstraction can assume
•  Examples:

–  Numbers, Records, Lists,… (Oz basic data types)
–  Stacks, Dictionaries,… (user-defined secure data types)

C. Varela 3

Types of typing
•  Languages can be weakly typed

–  Internal representation of types can be manipulated by a program
•  e.g., a string in C is an array of characters ending in ‘\0’.

•  Strongly typed programming languages can be further
subdivided into:
–  Dynamically typed languages

•  Variables can be bound to entities of any type, so in general
the type is only known at run-time, e.g., Oz, SALSA.

–  Statically typed languages
•  Variable types are known at compile-time, e.g., C++, Java.

C. Varela 4

Type Checking and Inference

•  Type checking is the process of ensuring a program is well-
typed.
–  One strategy often used is abstract interpretation:

•  The principle of getting partial information about the answers
from partial information about the inputs

•  Programmer supplies types of variables and type-checker
deduces types of other expressions for consistency

•  Type inference frees programmers from annotating
variable types: types are inferred from variable usage, e.g.
ML.

C. Varela 5

Example: The identity function
•  In a dynamically typed language, e.g., Oz, it is possible to write a

generic function, such as the identity combinator:

 fun {Id X} X end

•  In a statically typed language, it is necessary to assign types to

variables, e.g. in a statically typed variant of Oz you would write:

 fun {Id X:integer}:integer X end

 These types are checked at compile-time to ensure the function is only
passed proper arguments. {Id 5} is valid, while {Id Id} is not.

C. Varela 6

Example: Improper Operations
•  In a dynamically typed language, it is possible to write an improper

operation, such as passing a non-list as a parameter, e.g. in Oz:

 declare fun {ShiftRight L} 0|L end
 {Browse {ShiftRight 4}} % unintended missuse
 {Browse {ShiftRight [4]}} % proper use

•  In a statically typed language, the same code would produce a type

error, e.g. in a statically typed variant of Oz you would write:

 declare fun {ShiftRight L:List}:List 0|L end
 {Browse {ShiftRight 4}} % compiler error!!
 {Browse {ShiftRight [4]}} % proper use

C. Varela 7

Example: Type Inference
•  In a statically typed language with type inference (e.g., ML), it is

possible to write code without type annotations, e.g. using Oz syntax:

 declare fun {Increment N} N+1 end
 {Browse {Increment [4]}} % compiler error!!
 {Browse {Increment 4}} % proper use

•  The type inference system knows the type of ’+’ to be:

 <number> X <number> à <number>

Therefore, Increment must always receive an argument of type
<number> and it always returns a value of type <number>.

C. Varela 8

Static Typing Advantages

•  Static typing restricts valid programs (i.e., reduces
language’s expressiveness) in return for:

–  Improving error-catching ability
–  Efficiency
–  Security
–  Partial program verification

C. Varela 9

Dynamic Typing Advantages

•  Dynamic typing allows all syntactically legal programs to
execute, providing for:

–  Faster prototyping (partial, incomplete programs can be tested)
–  Separate compilation---independently written modules can more

easily interact--- which enables open software development
–  More expressiveness in language

C. Varela 10

Combining static and dynamic
typing

•  Programming language designers do not have to make an
all-or-nothing decision on static vs dynamic typing.
–  e.g, Java has a root Object class which enables polymorphism

•  A variable declared to be an Object can hold an instance of any
(non-primitive) class.

•  To enable static type-checking, programmers need to annotate
expressions using these variables with casting operations, i.e., they
instruct the type checker to pretend the type of the variable is different
(more specific) than declared.

•  Run-time errors/exceptions can then occur if type conversion
(casting) fails.

•  Alice (Saarland U.) is a statically-typed variant of Oz.
•  SALSA-Lite is a statically-typed variant of SALSA.

C. Varela 11

Parameter Passing Mechanisms
•  Operations on data types have arguments and results. Many

mechanisms exist to pass these arguments and results between
calling programs and abstractions, e.g.:

–  Call by reference
–  Call by variable
–  Call by value
–  Call by value-result
–  Call by name
–  Call by need

•  We will show examples in Pascal-like syntax, with semantics
given in Oz language.

C. Varela 12

Call by reference
proc {Sqr A ?B}

 B=A*A
end

local I in

 {Sqr 25 I}
 {Browse I}

end

procedure sqr(a:integer, var b:integer);
begin

 b:=a*a
end

var i:integer;
sqr(25, i);
writeln(i);

 •  The variable passed as an argument can be changed inside the procedure
with visible effects outside after the call.
•  The B inside Sqr is a synonym (an alias) of the I outside.
•  The default mechanism in Oz is call by reference.

C. Varela 13

Call by variable
proc {Sqr A}

 A:=@A*@A
end

local I = {NewCell 0} in

 I := 25
 {Sqr I}
 {Browse @I}

end

procedure sqr(var a:integer);
begin

 a:=a*a
end

var i:integer;
i:=25;
sqr(i);
writeln(i);

•  Special case of call by reference.
•  The identity of the cell is passed to the procedure.
•  The A inside Sqr is a synonym (an alias) of the I outside.

C. Varela 14

Call by value
proc {Sqr A}

 C = {NewCell A}
in

 C := @C + 1
 {Browse @C*@C}

end
local I = 25 in

 {Sqr I} {Browse I}
end

procedure sqr(a:integer);
begin

 a:=a+1;
 writeln(a*a)

end
var i:integer;
i:=25;
sqr(i);
writeln(i);
•  A value is passed to the procedure. Any changes to the value inside the
procedure are purely local, and therefore, not visible outside.
•  The local cell C is initialized with the argument A of Sqr.
•  Java uses call by value for both primitive values and object references.
•  SALSA uses call by value in both local and remote message sending.

C. Varela 15

Call by value-result
proc {SqrInc A}

 D = {NewCell @A}
in

 D := @D * @D
 D := @D + 1
 A := @D

end
local C = {NewCell 0} in

 C := 25
 {SqrInc C}
 {Browse @C}

end

procedure sqr_inc(inout a:integer);
begin

 a:=a*a
 a:= a+1
end

var i:integer;
i:=25;
sqr_inc(i);
writeln(i);

•  A modification of call by variable. Variable argument can be modified.
•  There are two mutable variables: one inside Sqr (namely D) and one outside
(namely C). Any intermediate changes to the variable inside the procedure are
purely local, and therefore, not visible outside.
•  inout is ADA terminology.

C. Varela 16

Call by name
proc {Sqr A}

 {A} := @{A} * @{A}
end

local C = {NewCell 0} in

 C := 25
 {Sqr fun {$} C end}
 {Browse @C}

end

procedure sqr(callbyname a:integer);
begin

 a:=a*a
end

var i:integer;
i:=25;
sqr(i);
writeln(i);

•  Call by name creates a function for each argument (a thunk). Calling the
function evaluates and returns the argument. Each time the argument is
needed inside the procedure, the thunk is called.
•  Thunks were originally invented for Algol 60.

C. Varela 17

Call by need
proc {Sqr A}

 B = {A} % only if argument used!!
in

 B := @B * @B
end

local C = {NewCell 0} in

 C := 25
 {Sqr fun {$} C end}
 {Browse @C}

end

procedure sqr(callbyneed a:integer);
begin

 a:=a*a
end

var i:integer;
i:=25;
sqr(i);
writeln(i);

•  A modification of call by name. The thunk is evaluated at most once.
The result is stored and used for subsequent evaluations.
•  Call by need is effectively lazy evaluation. Haskell uses lazy evaluation.
•  Call by name is lazy evaluation without memoization.

C. Varela 18

Which one is right or best?
•  It can be argued that call by reference is the most primitive.

–  Indeed, we have coded different parameter passing styles using call by
reference and a combination of cells and procedure values.

–  Arguably, call by value (along with cells and procedure values) is just as
general. E.g., the example given for call by variable would also work in a
call by value primitive mode. Exercise: Why?

•  When designing a language, the question is: for which mechanism(s) to
provide linguistic abstractions?

–  It largely depends on intended language use, e.g., call by name and call by
need are integral to programming languages with lazy evaluation (e.g.,
Haskell and Miranda.)

–  For concurrent programs, call by value-result can be very useful (e.g. Ada.)
–  For distributed programs, call by value is best due to state encapsulation

(e.g., SALSA).

C. Varela 19

More parameter passing styles
•  Some languages for distributed computing have support for call-by-

move.
–  Arguments to remote procedure calls are temporarily migrated to the remote

location for the time of the remote procedure execution (e.g., Emerald).
–  A dual approach is to migrate the object whose method is to be invoked to

the client side before method invocation (e.g., Oz).

•  Java Remote Method Invocation (RMI) dynamically determines
mechanism to use depending on argument types:

–  It uses call by reference in remote procedure calls, if and only if, arguments
implement a special (Remote) interface

–  Otherwise, arguments are passed using call by value.
•  => Semantics of method invocation is different for local and remote

method invocations!!
–  There is no language support for object migration in Java (as there is in

other languages, e.g., SALSA, Oz, Emerald), so call by move is not
possible.

C. Varela; Adapted from S. Haridi and P. Van Roy 20

Lazy evaluation
•  The default functions in Oz are evaluated eagerly (as soon

as they are called)
•  Another way is lazy evaluation where a computation is

done only when the result is needed

declare
fun lazy {Ints N}
 N|{Ints N+1}
end

•  Calculates the infinite list:
0 | 1 | 2 | 3 | ...

C. Varela; Adapted from S. Haridi and P. Van Roy 21

Lazy evaluation (2)
•  Write a function that computes as

many rows of Pascal’s triangle as
needed

•  We do not know how many
beforehand

•  A function is lazy if it is evaluated
only when its result is needed

•  The function PascalList is evaluated
when needed

fun lazy {PascalList Row}
 Row | {PascalList
 {AddList

 Row
 {ShiftRight Row}}}

end

C. Varela; Adapted from S. Haridi and P. Van Roy 22

Lazy evaluation (3)
•  Lazy evaluation will avoid

redoing work if you decide first
you need the 10th row and later
the 11th row

•  The function continues where it
left off

declare
L = {PascalList [1]}
{Browse L}
{Browse L.1}
{Browse L.2.1}

L<Future>
[1]
[1 1]

C. Varela; Adapted from S. Haridi and P. Van Roy 23

Lazy execution
•  Without lazyness, the execution order of each thread

follows textual order, i.e., when a statement comes as the
first in a sequence it will execute, whether or not its results
are needed later

•  This execution scheme is called eager execution, or
supply-driven execution

•  Another execution order is that a statement is executed
only if its results are needed somewhere in the program

•  This scheme is called lazy evaluation, or demand-driven
evaluation (some languages use lazy evaluation by default,
e.g., Haskell)

C. Varela; Adapted from S. Haridi and P. Van Roy 24

Example
 B = {F1 X}
 C = {F2 Y}
 D = {F3 Z}
 A = B+C

•  Assume F1, F2 and F3 are lazy functions
•  B = {F1 X} and C = {F2 Y} are executed only if and when

their results are needed in A = B+C
•  D = {F3 Z} is not executed since it is not needed

C. Varela; Adapted from S. Haridi and P. Van Roy 25

Example

•  In lazy execution, an
operation suspends until its
result is needed

•  The suspended operation is
triggered when another
operation needs the value
for its arguments

•  In general multiple
suspended operations could
start concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Demand

C. Varela; Adapted from S. Haridi and P. Van Roy 26

Example II

•  In data-driven execution,
an operation suspends until
the values of its arguments
results are available

•  In general the suspended
computation could start
concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Data driven

C. Varela; Adapted from S. Haridi and P. Van Roy 27

Using Lazy Streams
fun {Sum Xs A Limit}
 if Limit>0 then
 case Xs of X|Xr then

 {Sum Xr A+X Limit-1}
 end
 else A end
end

local Xs S in
 Xs={Ints 0}
 S={Sum Xs 0 1500}
 {Browse S}
end

C. Varela; Adapted from S. Haridi and P. Van Roy 28

How does it work?
 fun {Sum Xs A Limit}
 if Limit>0 then
 case Xs of X|Xr then

 {Sum Xr A+X Limit-1}
 end
 else A end
end

fun lazy {Ints N}
 N | {Ints N+1}
end

local Xs S in
 Xs = {Ints 0}
 S={Sum Xs 0 1500}
 {Browse S}
end

C. Varela; Adapted from S. Haridi and P. Van Roy 29

Improving throughput
•  Use a lazy buffer
•  It takes a lazy input stream In and an integer N, and

returns a lazy output stream Out
•  When it is first called, it first fills itself with N elements by

asking the producer
•  The buffer now has N elements filled
•  Whenever the consumer asks for an element, the buffer in

turn asks the producer for another element

C. Varela; Adapted from S. Haridi and P. Van Roy 30

The buffer example

producer buffer consumer

N

producer buffer consumer

N

C. Varela; Adapted from S. Haridi and P. Van Roy 31

The buffer
fun {Buffer1 In N}
 End={List.drop In N}

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

 Traversing the In stream, forces
the producer to emit N elements

C. Varela; Adapted from S. Haridi and P. Van Roy 32

The buffer II
fun {Buffer2 In N}
 End = thread

 {List.drop In N}
 end

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

 Traversing the In stream, forces
the producer to emit N elements
and at the same time serves the
consumer

C. Varela; Adapted from S. Haridi and P. Van Roy 33

The buffer III
fun {Buffer3 In N}
 End = thread

 {List.drop In N}
 end

 fun lazy {Loop In End}
 E2 = thread End.2 end

 In.1|{Loop In.2 E2}
 end
in
 {Loop In End}
end

Traverse the In stream, forces
the producer to emit N elements
and at the same time serves the
consumer, and requests the next
element ahead

C. Varela; Adapted from S. Haridi and P. Van Roy 34

Larger Example:
The Sieve of Eratosthenes

•  Produces prime numbers
•  It takes a stream 2...N, peals off 2 from the rest of the stream
•  Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys Zs

X|Zs

C. Varela; Adapted from S. Haridi and P. Van Roy 35

Lazy Sieve
fun lazy {Sieve Xs}
 X|Xr = Xs in
 X | {Sieve {LFilter

 Xr
 fun {$ Y} Y mod X \= 0 end
 }}

end

fun {Primes} {Sieve {Ints 2}} end

C. Varela; Adapted from S. Haridi and P. Van Roy 36

Lazy Filter
For the Sieve program we need a lazy filter

fun lazy {LFilter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
 end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 37

Define streams implicitly

•  Ones = 1 | Ones
•  Infinite stream of ones

1

cons

Ones

C. Varela; Adapted from S. Haridi and P. Van Roy 38

Define streams implicitly

•  Xs = 1 | {LMap Xs
 fun {$ X} X+1 end}

•  What is Xs ?

1

cons

+1

Xs?

C. Varela; Adapted from S. Haridi and P. Van Roy 39

The Hamming problem
•  Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

C. Varela; Adapted from S. Haridi and P. Van Roy 40

The Hamming problem
•  Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge

C. Varela; Adapted from S. Haridi and P. Van Roy 41

The Hamming problem
•  Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge

1

cons

H

C. Varela; Adapted from S. Haridi and P. Van Roy 42

Lazy File Reading
fun {ToList FO}

fun lazy {LRead} L T in
 if {File.readBlock FO L T} then
 T = {LRead}
 else T = nil {File.close FO} end
 L

end
{LRead}

end
•  This avoids reading the whole file in memory

C. Varela; Adapted from S. Haridi and P. Van Roy 43

List Comprehensions
•  Abstraction provided in lazy functional languages that

allows writing higher level set-like expressions
•  In our context we produce lazy lists instead of sets
•  The mathematical set expression

–  {x*y | 1≤x ≤10, 1≤y ≤x}
•  Equivalent List comprehension expression is

–  [X*Y | X = 1..10 ; Y = 1..X]

•  Example:
–  [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10]

C. Varela; Adapted from S. Haridi and P. Van Roy 44

List Comprehensions
•  The general form is
•  [f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...)

 y ← gen(x, a1,...,an) ; guard(y,x,...)

]
•  No linguistic support in Mozart/Oz, but can be easily

expressed

C. Varela; Adapted from S. Haridi and P. Van Roy 45

Example 1
•  z = [x#x | x ← from(1,10)]
•  Z = {LMap {LFrom 1 10} fun{$ X} X#X end}

•  z = [x#y | x ← from(1,10), y ← from(1,x)]
•  Z = {LFlatten

 {LMap {LFrom 1 10}
 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }

 }

C. Varela; Adapted from S. Haridi and P. Van Roy 46

Example 2
•  z = [x#y | x ← from(1,10), y ← from(1,x), x+y≤10]
•  Z ={LFilter

 {LFlatten
 {LMap {LFrom 1 10}

 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }

 }
 fun {$ X#Y} X+Y=<10 end} }

C. Varela; Adapted from S. Haridi and P. Van Roy 47

Implementation of lazy execution

〈s〉 ::= skip empty statement
 | ...

 | thread 〈s1〉 end thread creation
 | {ByNeed fun{$} 〈e〉 end 〈x〉} by need statement

The following defines the syntax of a statement, 〈s〉 denotes a statement

zero arity
function

variable

C. Varela; Adapted from S. Haridi and P. Van Roy 48

Implementation

 some statement

f
x

{ByNeed fun{$} 〈e〉 end X,E }

stack

store

A function value is created in
the
store (say f)
the function f is associated
with
the variable x
execution proceeds
immediately to next statement

f

C. Varela; Adapted from S. Haridi and P. Van Roy 49

Implementation

 some statement

f
x : f

{ByNeed fun{$} 〈e〉 end X,E }

stack

store

A function value is created in
the
store (say f)
the function f is associated
with
the variable x
execution proceeds
immediately to next statement

f

(fun{$} 〈e〉 end X,E)

C. Varela; Adapted from S. Haridi and P. Van Roy 50

Accessing the ByNeed variable
•  X = {ByNeed fun{$} 111*111 end} (by thread T0)

•  Access by some thread T1
–  if X > 1000 then {Browse hello#X} end

 or

–  {Wait X}
–  Causes X to be bound to 12321 (i.e. 111*111)

C. Varela; Adapted from S. Haridi and P. Van Roy 51

Implementation
Thread T1

1.  X is needed
2.  start a thread T2 to execute F (the function)
3.  only T2 is allowed to bind X

Thread T2

1.  Evaluate Y = {F}
2.  Bind X the value Y
3.  Terminate T2

4.  Allow access on X

C. Varela; Adapted from S. Haridi and P. Van Roy 52

Lazy functions
fun lazy {Ints N}

N | {Ints N+1}
end

fun {Ints N}
 fun {F} N | {Ints N+1} end

in {ByNeed F}
end

C. Varela 53

Exercises
92.  CTM Exercise 6.10.2 (page 482).
93.  Explain why the call by variable example given would also work

over a call by value primitive parameter passing mechanism. Give an
example for which this is not the case.

94.  Explain why call by need cannot always be encoded as shown in the
given example by producing a counter-example. (Hint: recall the
difference between normal order evaluation and applicative order
evaluation in termination of lambda calculus expression evaluations.)

95.  Create a program in which call by name and call by need parameter
passing styles result in different outputs.

96.  Can type inference always deduce the type of an expression?
–  If not, give a counter-example. How would you design a language to

help it statically infer types for non-trivial expressions?

C. Varela; Adapted from S. Haridi and P. Van Roy 54

Exercises

97.  Write a lazy append list operation LazyAppend. Can you also write

LazyFoldL? Why or why not?
98.  CTM Exercise 4.11.10 (pg 341)
99.  CTM Exercise 4.11.13 (pg 342)
100.  CTM Exercise 4.11.17 (pg 342)

