Lambda Calculus (PDCS 2)
alpha-renaming, beta reduction, applicative and
normal evaluation orders, Church-Rosser theorem,
combinators

Carlos Varela
Rensselaer Polytechnic Institute

September 16, 2014
Mathematical Functions

Take the mathematical function:

\[f(x) = x^2 \]

\(f \) is a function that maps integers to integers:

We apply the function \(f \) to numbers in its domain to obtain a number in its range, e.g.:

\[f(-2) = 4 \]
Function Composition

Given the mathematical functions:
\[f(x) = x^2, \quad g(x) = x + 1 \]

\(f \circ g \) is the composition of \(f \) and \(g \):

\[f \circ g (x) = f(g(x)) \]

\[f \circ g (x) = f(g(x)) = f(x+1) = (x+1)^2 = x^2 + 2x + 1 \]

\[g \circ f (x) = g(f(x)) = g(x^2) = x^2 + 1 \]

Function composition is therefore not commutative. Function composition can be regarded as a \((\text{higher-order})\) function with the following type:

\(\circ : (Z \to Z) \times (Z \to Z) \to (Z \to Z) \)
Lambda Calculus (Church and Kleene 1930’s)

A unified language to manipulate and reason about functions.

Given
\[f(x) = x^2 \]

\[\lambda x. x^2 \]

represents the same \(f \) function, except it is *anonymous*.

To represent the function evaluation \(f(2) = 4 \), we use the following \(\lambda \)-calculus syntax:

\[(\lambda x. x^2 \ 2) \Rightarrow 2^2 \Rightarrow 4 \]
Lambda Calculus Syntax and Semantics

The syntax of a λ-calculus expression is as follows:

\[e ::= v \quad \text{variable} \]
\[| \quad \lambda v. e \quad \text{functional abstraction} \]
\[| \quad (e\ e) \quad \text{function application} \]

The semantics of a λ-calculus expression is as follows:

\[(\lambda x. E\ M) \Rightarrow E\{M/x}\]

where we alpha-rename the lambda abstraction \(E\) if necessary to avoid capturing free variables in \(M\).
Currying

The lambda calculus can only represent functions of one variable. It turns out that one-variable functions are sufficient to represent multiple-variable functions, using a strategy called currying.

E.g., given the mathematical function: $h(x,y) = x+y$
of type $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$

We can represent h as h' of type: $h': \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$

Such that $h(x,y) = h'(x)(y) = x+y$

For example, $h'(2) = g$, where $g(y) = 2+y$

We say that h' is the curried version of h.
Function Composition in Lambda Calculus

S: \(\lambda x. (s \ x) \)
 (Square)

I: \(\lambda x. (i \ x) \)
 (Increment)

C: \(\lambda f. \lambda g. \lambda x. (f (g \ x)) \)
 (Function Composition)

((C S) I)

Recall semantics rule:

\((\lambda x. E M) \Rightarrow E\{M/x\}\)
Free and Bound Variables

The lambda functional abstraction is the only syntactic construct that binds variables. That is, in an expression of the form:

$$\lambda v. e$$

we say that free occurrences of variable v in expression e are bound. All other variable occurrences are said to be free.

E.g.,

$$(\lambda x. \lambda y. (x y) (y w))$$

Bound Variables

Free Variables
Alpha renaming is used to prevent capturing free occurrences of variables when reducing a lambda calculus expression, e.g.,

\[(\lambda x. \lambda y. (x y) (y w)) \]
\[\Rightarrow \lambda y. ((y w) y) \]

This reduction \textbf{erroneously} captures the free occurrence of \(y \).

A correct reduction first renames \(y \) to \(z \), (or any other \textit{fresh} variable) e.g.,

\[(\lambda x. \lambda y. (x y) (y w)) \]
\[\Rightarrow (\lambda x. \lambda z. (x z) (y w)) \]
\[\Rightarrow \lambda z. ((y w) z) \]

where \(y \) remains \textit{free}.

C. Varela
Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?
Consider:

\[\lambda x. (\lambda x. (s x) (\lambda x. (i x) x)) \]

There are two possible evaluation orders:

Applicative Order:

\[\lambda x. (\lambda x. (s x) (\lambda x. (i x) x)) \]
\[\Rightarrow \lambda x. (\lambda x. (s x) (i x)) \]
\[\Rightarrow \lambda x. (s (i x)) \]

Normal Order:

\[\lambda x. (\lambda x. (s x) (\lambda x. (i x) x)) \]
\[\Rightarrow \lambda x. (s (\lambda x. (i x) x)) \]
\[\Rightarrow \lambda x. (s (i x)) \]

Is the final result always the same?

Recall semantics rule:

(\lambda x. E M) \Rightarrow E\{M/x\}
Church-Rosser Theorem

If a lambda calculus expression can be evaluated in two different ways and both ways terminate, both ways will yield the same result.

Also called the *diamond* or *confluence* property.

Furthermore, if there is a way for an expression evaluation to terminate, using normal order will cause termination.
Order of Evaluation and Termination

Consider:

\[(\lambda x. y (\lambda x. (x x) \lambda x. (x x)))\]

There are two possible evaluation orders:

Applicative Order

\[(\lambda x. y (\lambda x. (x x) \lambda x. (x x))) \Rightarrow (\lambda x. y (\lambda x. (x x) \lambda x. (x x)))\]

Normal Order

\[(\lambda x. y (\lambda x. (x x) \lambda x. (x x))) \Rightarrow y\]

In this example, normal order terminates whereas applicative order does not.
Combinators

A lambda calculus expression with no free variables is called a combinator. For example:

I: \(\lambda x. x \) (Identity)

App: \(\lambda f. \lambda x. (f \ x) \) (Application)

C: \(\lambda f. \lambda g. \lambda x. (f \ (g \ x)) \) (Composition)

L: \((\lambda x. (x \ x) \ \lambda x. (x \ x)) \) (Loop)

Cur: \(\lambda f. \lambda x. \lambda y. ((f \ x) \ y) \) (Currying)

Seq: \(\lambda x. \lambda y. (\lambda z. y \ x) \) (Sequencing--normal order)

ASeq: \(\lambda x. \lambda y. (y \ x) \) (Sequencing--applicative order)

where \(y \) denotes a thunk, *i.e.*, a lambda abstraction wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of its context.
Most functional programming languages have a syntactic form for lambda abstractions. For example the identity combinator:

\[\lambda x. x \]

can be written in Oz as follows:

\[
\text{fun} \{x\} x \text{end}
\]

and it can be written in Scheme as follows:

\[
\text{lambda}(x) \, x
\]
Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

```oz
fun {$ F}
    fun {$ X}
        fun {$ Y}
            {F X Y}
        end
    end
end
```

It takes a function of two arguments, F, and returns its curried version, e.g.,

\[\text{{Curry Plus}}\{2\} \ 3 \Rightarrow 5 \]
Exercises

20. PDCS Exercise 2.11.1 (page 31).
21. PDCS Exercise 2.11.2 (page 31).
22. PDCS Exercise 2.11.5 (page 31).
23. PDCS Exercise 2.11.6 (page 31).