
CSCI-1200 Data Structures — Fall 2015
Homework 3 — Dynamic Tetris Arrays

In this assignment you will use dynamically-allocated arrays to keep track of blocks on the 2D grid of the
classic Tetris computer game. Follow these links to read about the history of the game and play an online
interactive version: http://en.wikipedia.org/wiki/Tetris http://tetris.com/play-tetris/

There are 7 different piece shapes in the game of Tetris – each named by the letter that most closely matches
its shape. Each piece is built from 4 small squares and can optionally be rotated clockwise by 90◦, 180◦, or
270◦, before being dropped onto the board. The different pieces are drawn below in their default orientations
(0◦ rotation).

JSI O T Z L

In each step of the game, a piece will fall down vertically from the sky onto the board – stopping when it
collides either with the bottom of the board, or with another piece. Below is a small example of game play.

02 20 0 0 0 3 3 3 320 70 2 3 3 3 992 30 3 44 3 9 9 3 4 4 3 9 9 3 3 3 2 8 8

The sequence of commands on the right will create the above example.
We start by constructing an empty board with width = 6. Then we
drop 5 shapes onto the board using the add_piece member function.
This function takes in 3 arguments: a single character naming the piece
shape, an integer indicating piece rotation from default orientation, and
an integer specifying the horizontal placement of the leftmost square of
the piece. Each new piece is highlighted in green.

Tetris tetris(6);

tetris.add_piece('O', 0,1);

tetris.add_piece('I',90,2);

tetris.add_piece('I', 0,4);

tetris.add_piece('O', 0,3);

tetris.add_piece('O', 0,0);

The final two frames of the sequence above illustrate the scoring mechanism for Tetris. When a horizontal
row stretching across the entire board is filled with blocks (no air gaps!), then that entire row (shown in red)
is deleted. All squares above the deleted row are shifted down by 1 unit (or shifted n units if n rows were
deleted). Note that we might be left with squares that are unsupported and floating. These unsupported
squares do not fall after a score. The member function remove_full_rows should search the board for rows
that are full and should be removed. This function returns the number of rows removed.

In the illustrations above we track the integer height of each column
of the board. This is not the count of how many squares are in each
column, but the height of the topmost square in that column.

The Data Representation

Your task is to implement a class named Tetris with a tetris.h

header file and tetris.cpp implementation file. You are required to
follow the specific memory layout diagrammed on the right (which
corresponds to the 3rd step of the earlier example). The class has
3 member variables: the integer width, an array of integer column
heights, and a two dimensional array structure holding the character
column data. NOTE: You may not use the STL vector class for
the implementation of this assignment.

I
I
I
I

O
O

O
O
I I I I

data:

width: 6

0 2 3 3 7 3heights:

http://en.wikipedia.org/wiki/Tetris
http://tetris.com/play-tetris/


As the game progresses and the board changes, the
data structure must be updated. When we add the
next piece we must first identify which columns in-
crease in height and by how much. New column ar-
rays of the appropriate size are dynamically allocated,
data from the old column arrays are copied to the new
arrays, and the new piece squares are filled in with the
appropriate piece letter. The old arrays are deleted,
pointers are shuffled, and the heights array is up-
dated with the new column array sizes. Note that
often pockets of air will be trapped under pieces. We
will represent air with the space character.

I

O

I

O
O
I I

O

I

O
O

O
O

20

I I

O
O
O
O

I

O
O

44

I
I
I

O
O O

O
O
O

I

I
I
I
I
I

O

I

I I
I

O

3 3

data:

6

heights: heights: 3 3

data:

width: 6 width:

9 9

I

99

Similarly, when a full row is identified during scoring, all of the columns will decrease in height. You are
required to re-allocate new, smaller arrays for every column and copy the remaining squares of data to the
new arrays. The board representation should always use the smallest size arrays possible. The data structure
for this assignment (intentionally) involves a lot of memory allocation & deallocation. Certainly there are
other implementation designs for the game of Tetris, and it is possible to revise this design for improved
performance and efficiency. However, please implement the data structure exactly as presented. Our version
of Tetris also allows us to increase or decrease the width of the board. Note that when the board is decreased
in width, we may lose some squares. See the provided main.cpp for examples of these functions and the
corresponding expected program output. Draw your own diagrams to understand which parts of the data
structure must be reallocated and copied, and which parts can be reused just by changing pointers.

Finally, you will need to implement the destroy helper function to clean up all dynamically allocated member
variables for the class so you don’t have any memory leaks. Note: In the coming weeks, we will learn about
C++ class destructors, copy constructors, and assignment operators. You don’t need to worry about them
for this homework.

Testing, Debugging, and Printing

We provide a main.cpp file with a wide variety of tests of the Tetris data structure. Some of these tests
are initially commented out. We recommend that you get your class working on the basic tests, and then
uncomment the additional tests as you implement and debug the remaining functionality. Study the provided
test cases to understand the arguments and return values. We provide an ASCII art print function, and your
board output should match the samples exactly to receive full marks on the submission server.
Note: Do not edit the provided main.cpp file, except to uncomment the provided test cases as you work
through your implementation and to add your own test cases where specified.

We recommend using a memory debugging tool to find memory errors and memory leaks. Information on
installation and use of the memory debuggers “Dr. Memory” (available for Linux/MacOSX/Windows) and
“Valgrind” (available for Linux/OSX) is presented on the course webpage:

http://www.cs.rpi.edu/academics/courses/fall15/csci1200/memory_debugging.php
The homework submission server will also run your code with Dr. Memory to search for memory problems.
Your program must be memory error free and memory leak free to receive full credit.

Submission

Be sure to write your own new test cases and don’t forget to comment your code! Use the provided template
README.txt file for notes you want the grader to read. You must do this assignment on your own, as described
in the “Collaboration Policy & Academic Integrity” handout. If you did discuss this assignment, problem
solving techniques, or error messages, etc. with anyone, please list their names in your README.txt file.

FINAL NOTE: If you earn 10 points on the homework submission server by 11:59pm on Wednesday, Sept
30th, you may submit your assignment on Friday, Oct 2nd by 11:59pm without being charged a late day.

2

http://www.cs.rpi.edu/academics/courses/fall15/csci1200/memory_debugging.php
http://www.cs.rpi.edu/academics/courses/fall15/csci1200/academic_integrity.php

