
CSCI-1200 Data Structures — Fall 2015

Lecture 2 — STL Strings & Vectors

Announcements

• HW 1 is available on-line through the website (on the “Calendar”).

• Be sure to read through this information as you start implementation of HW1:
“Misc Programming Information” (a link at the bottom of the left bar of the website).

• TA & instructor office hours are posted on website (“Weekly Schedule”).

• If you have not resolved issues with the C++ environment on your laptop, please do so immediately.

• If you cannot access the LMS site or the homework submission server, please email the instructor ASAP.

• Because many students were dealing with lengthy compiler/editor installation, registration confusion, etc., we
will allow (for the first lab only!) students to get checked off for any remaining Lab 1 checkpoints at the
beginning of next week’s Lab 2 or in your grad TA’s normal office hours.

Today

• Finish Lecture 1 We left off around section 1.14.

• STL Strings, char arrays (C-style Strings), & converting between these two types

• L-values vs. R-values

• STL Vectors as “smart arrays”

2.1 String Concatenation and Creation of Temporary String Object

• The following statement creates a new string by “adding” (concatenating) other strings together:

std::string my_line = "*" + std::string(first.size()+2,' ') + "*";

• The expression std::string(first.size()+2, ' ') within this statement creates a temporary STL string
but does not associate it with a variable.

2.2 Character Arrays and String Literals

• In the line below "Hello!" is a string literal and it is also an array of characters (with no associated variable
name).

cout << "Hello!" << endl;

• A char array can be initialized as: char h[] = {'H', 'e', 'l', 'l', 'o', '!', '\0'};

or as: char h[] = "Hello!";

In either case, array h has 7 characters, the last one being the null character.

• The C language provides many functions for manipulating these “C-style strings”. We don’t study them much
anymore because the “C++ style” STL string library is much more logical and easier to use.

• One place we do use them is in file names and command-line arguments, which you will use in Homework 1.

2.3 Conversion Between Standard Strings and C-Style String Literals

• We regularly convert/cast between C-style & C++-style (STL) strings. For example:

std::string s1("Hello!");

std::string s2(h);

where h is as defined above.

• You can obtain the C-style string from a standard string using the member function c_str, as in s1.c_str().

http://www.cs.rpi.edu/academics/courses/fall15/csci1200/calendar.php
http://www.cs.rpi.edu/academics/courses/fall15/csci1200/other_information.php
http://www.cs.rpi.edu/academics/courses/fall15/csci1200/schedule.php

2.4 L-Values and R-Values

• Consider the simple code below. String a becomes "Tim". No big deal, right? Wrong!

std::string a = "Kim";

std::string b = "Tom";

a[0] = b[0];

• Let’s look closely at the line: a[0] = b[0]; and think about what happens.

In particular, what is the difference between the use of a[0] on the left hand side of the assignment statement
and b[0] on the right hand side?

• Syntactically, they look the same. But,

– The expression b[0] gets the char value, 'T', from string location 0 in b. This is an r-value.

– The expression a[0] gets a reference to the memory location associated with string location 0 in a. This
is an l-value.

– The assignment operator stores the value in the referenced memory location.

The difference between an r-value and an l-value will be especially significant when we get to writing our own
operators later in the semester

• What’s wrong with this code?

std::string foo = "hello";

foo[2] = 'X';

cout << foo;

'X' = foo[3];

cout << foo;

Your C++ compiler will complain with something like: “non-lvalue in assignment”

2.5 Standard Library (STL) Vectors

• Example Motivating Problem: Read an unknown number of grades and compute some basic statistics such as
the mean (average), standard deviation, median (middle value), and mode (most frequently occurring value).

• Our solution to this problem will be much more elegant, robust, & less error-prone if we use the STL vector

class. Why would it be more difficult/wasteful/buggy to try to write this using C-style (dumb) arrays?

2.6 STL Vectors: a.k.a. “C++-Style”, “Smart” Arrays

• Standard library “container class” to hold sequences.

• A vector acts like a dynamically-sized, one-dimensional array.

• Capabilities:

– Holds objects of any type

– Starts empty unless otherwise specified

– Any number of objects may be added to the end — there is no limit on size.

– It can be treated like an ordinary array using the subscripting operator.

– A vector knows how many elements it stores! (unlike C arrays)

– There is NO automatic checking of subscript bounds.

• Here’s how we create an empty vector of integers:

std::vector<int> scores;

• Vectors are an example of a templated container class. The angle brackets < > are used to specify the type of
object (the “template type”) that will be stored in the vector.

2

• push back is a vector function to append a value to the end of the vector, increasing its size by one. This is
an O(1) operation (on average).

– There is NO corresponding push front operation for vectors.

• size is a function defined by the vector type (the vector class) that returns the number of items stored in the
vector.

• After vectors are initialized and filled in, they may be treated just like arrays.

– In the line

sum += scores[i];

scores[i] is an “r-value”, accessing the value stored at location i of the vector.

– We could also write statements like

scores[4] = 100;

to change a score. Here scores[4] is an “l-value”, providing the means of storing 100 at location 4 of the
vector.

– It is the job of the programmer to ensure that any subscript value i that is used is legal —- at least 0 and
strictly less than scores.size().

2.7 Initializing a Vector — The Use of Constructors

Here are several different ways to initialize a vector:

• This “constructs” an empty vector of integers. Values must be placed in the vector using push_back.

std::vector<int> a;

• This constructs a vector of 100 doubles, each entry storing the value 3.14. New entries can be created using
push_back, but these will create entries 100, 101, 102, etc.

int n = 100;

std::vector<double> b(100, 3.14);

• This constructs a vector of 10,000 ints, but provides no initial values for these integers. Again, new entries can
be created for the vector using push_back. These will create entries 10000, 10001, etc.

std::vector<int> c(n*n);

• This constructs a vector that is an exact copy of vector b.

std::vector<double> d(b);

• This is a compiler error because no constructor exists to create an int vector from a double vector. These are
different types.

std::vector<int> e(b);

2.8 Exercises

1. After the above code constructing the three vectors, what will be output by the following statement?

cout << a.size() << endl << b.size() << endl << c.size() << endl;

2. Write code to construct a vector containing 100 doubles, each having the value 55.5.

3. Write code to construct a vector containing 1000 doubles, containing the values 0, 1,
√

2,
√

3,
√

4,
√

5, etc.
Write it two ways, one that uses push_back and one that does not use push_back.

2.9 Example: Using Vectors to Compute Standard Deviation

Definition: If a0, a1, a2, . . . , an−1 is a sequence of n values, and µ is the average of these values, then the standard
deviation is [∑n−1

i=0 (ai − µ)2

n− 1

] 1
2

3

// Compute the average and standard deviation of an input set of grades.

#include <fstream>

#include <iomanip>

#include <iostream>

#include <vector> // to access the STL vector class

#include <cmath> // to use standard math library and sqrt

int main(int argc, char* argv[]) {

if (argc != 2) {

std::cerr << "Usage: " << argv[0] << " grades-file\n";

return 1;

}

std::ifstream grades_str(argv[1]);

if (!grades_str.good()) {

std::cerr << "Can not open the grades file " << argv[1] << "\n";

return 1;

}

std::vector<int> scores; // Vector to hold the input scores; initially empty.

int x; // Input variable

// Read the scores, appending each to the end of the vector

while (grades_str >> x) { scores.push_back(x); }

// Quit with an error message if too few scores.

if (scores.size() == 0) {

std::cout << "No scores entered. Please try again!" << std::endl;

return 1; // program exits with error code = 1

}

// Compute and output the average value.

int sum = 0;

for (unsigned int i = 0; i < scores.size(); ++ i) {

sum += scores[i];

}

double average = double(sum) / scores.size();

std::cout << "The average of " << scores.size() << " grades is "

<< std::setprecision(3) << average << std::endl;

// Exercise: compute and output the standard deviation.

double sum_sq_diff = 0.0;

for (unsigned int i=0; i<scores.size(); ++i) {

double diff = scores[i] - average;

sum_sq_diff += diff*diff;

}

double std_dev = sqrt(sum_sq_diff / (scores.size()-1));

std::cout << "The standard_deviation of " << scores.size()

<< " grades is " << std::setprecision(3) << std_dev << std::endl;

return 0; // everything ok

}

2.10 Standard Library Sort Function

• The standard library has a series of algorithms built to apply to container classes.

• The prototypes for these algorithms (actually the functions implementing these algorithms) are in header file
algorithm.

• One of the most important of the algorithms is sort.

• It is accessed by providing the beginning and end of the container’s interval to sort.

4

• As an example, the following code reads, sorts and outputs a vector of doubles:

double x;

std::vector<double> a;

while (std::cin >> x)

a.push_back(x);

std::sort(a.begin(), a.end());

for (unsigned int i=0; i < a.size(); ++i)

std::cout << a[i] << '\n';

• a.begin() is an iterator referencing the first location in the vector, while a.end() is an iterator referencing
one past the last location in the vector.

– We will learn much more about iterators in the next few weeks.

– Every container has iterators: strings have begin() and end() iterators defined on them.

• The ordering of values by std::sort is least to greatest (technically, non-decreasing). We will see ways to
change this.

2.11 Example: Computing the Median

The median value of a sequence is less than half of the values in the sequence, and greater than half of the values
in the sequence. If a0, a1, a2, . . . , an−1 is a sequence of n values AND if the sequence is sorted such that a0 ≤ a1 ≤
a2 ≤ · · · ≤ an−1 then the median is

a(n−1)/2 if n is odd

an/2−1 + an/2

2 if n is even

// Compute the median value of an input set of grades.

#include <algorithm>

#include <cmath>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <vector>

void read_scores(std::vector<int> & scores, std::ifstream & grade_str) {

int x; // input variable

while (grade_str >> x) {

scores.push_back(x);

}

}

void compute_avg_and_std_dev(const std::vector<int>& s, double & avg, double & std_dev) {

// Compute and output the average value.

int sum=0;

for (unsigned int i = 0; i < s.size(); ++ i) {

sum += s[i];

}

avg = double(sum) / s.size();

// Compute the standard deviation

double sum_sq = 0.0;

for (unsigned int i=0; i < s.size(); ++i) {

sum_sq += (s[i]-avg) * (s[i]-avg);

}

std_dev = sqrt(sum_sq / (s.size()-1));

}

double compute_median(const std::vector<int> & scores) {

// Create a copy of the vector

std::vector<int> scores_to_sort(scores);

// Sort the values in the vector. By default this is increasing order.

5

std::sort(scores_to_sort.begin(), scores_to_sort.end());

// Now, compute and output the median.

unsigned int n = scores_to_sort.size();

if (n%2 == 0) // even number of scores

return double(scores_to_sort[n/2] + scores_to_sort[n/2-1]) / 2.0;

else

return double(scores_to_sort[n/2]); // same as (n-1)/2 because n is odd

}

int main(int argc, char* argv[]) {

if (argc != 2) {

std::cerr << "Usage: " << argv[0] << " grades-file\n";

return 1;

}

std::ifstream grades_str(argv[1]);

if (!grades_str) {

std::cerr << "Can not open the grades file " << argv[1] << "\n";

return 1;

}

std::vector<int> scores; // Vector to hold the input scores; initially empty.

read_scores(scores, grades_str); // Read the scores, as before

// Quit with an error message if too few scores.

if (scores.size() == 0) {

std::cout << "No scores entered. Please try again!" << std::endl;

return 1;

}

// Compute the average, standard deviation and median

double average, std_dev;

compute_avg_and_std_dev(scores, average, std_dev);

double median = compute_median(scores);

// Output

std::cout << "Among " << scores.size() << " grades: \n"

<< " average = " << std::setprecision(3) << average << '\n'

<< " std_dev = " << std_dev << '\n'

<< " median = " << median << std::endl;

return 0;

}

2.12 Passing Vectors (and Strings) As Parameters

The following outlines rules for passing vectors as parameters. The same rules apply to passing strings.

• If you are passing a vector as a parameter to a function and you want to make a (permanent) change to the
vector, then you should pass it by reference.

– This is illustrated by the function read scores in the program median grade.

– This is very different from the behavior of arrays as parameters.

• What if you don’t want to make changes to the vector or don’t want these changes to be permanent?

– The answer we’ve learned so far is to pass by value.

– The problem is that the entire vector is copied when this happens! Depending on the size of the vector,
this can be a considerable waste of memory.

• The solution is to pass by constant reference: pass it by reference, but make it a constant so that it can not
be changed.

– This is illustrated by the functions compute avg and std dev and compute median in the program
median grade.

• As a general rule, you should not pass a container object, such as a vector or a string, by value because of the
cost of copying.

6

	String Concatenation and Creation of Temporary String Object
	Character Arrays and String Literals
	Conversion Between Standard Strings and C-Style String Literals
	L-Values and R-Values
	Standard Library (STL) Vectors
	STL Vectors: a.k.a. ``C++-Style'', ``Smart'' Arrays
	Initializing a Vector — The Use of Constructors
	Exercises
	Example: Using Vectors to Compute Standard Deviation
	Standard Library Sort Function
	Example: Computing the Median
	Passing Vectors (and Strings) As Parameters

