CSCI-1200 Data Structures — Fall 2015
Lecture 2 — STL Strings & Vectors

Announcements

HW 1 is available on-line through the website (on the “Calendar”).

Be sure to read through this information as you start implementation of HW1:
“Misc Programming Information” (a link at the bottom of the left bar of the website).

TA & instructor office hours are posted on website (“Weekly Schedule”).
If you have not resolved issues with the C++ environment on your laptop, please do so immediately.
If you cannot access the LMS site or the homework submission server, please email the instructor ASAP.

Because many students were dealing with lengthy compiler/editor installation, registration confusion, etc., we
will allow (for the first lab only!) students to get checked off for any remaining Lab 1 checkpoints at the
beginning of next week’s Lab 2 or in your grad TA’s normal office hours.

Today

2.1

2.2

2.3

Finish Lecture 1 We left off around section 1.14.
STL Strings, char arrays (C-style Strings), & converting between these two types
L-values vs. R-values

STL Vectors as “smart arrays”

String Concatenation and Creation of Temporary String Object
The following statement creates a new string by “adding” (concatenating) other strings together:

std::string my_line = "¥" + std::string(first.size()+2,' ') + "x";
The expression std::string(first.size()+2, ' ') within this statement creates a temporary STL string
but does not associate it with a variable.

Character Arrays and String Literals

In the line below "Hello!" is a string literal and it is also an array of characters (with no associated variable
name).

cout << "Hello!" << endl;
A char array can be initialized as: char h(] = {'H', 'e', '1', '1', 'o', "', '\O0'};
or as: char h[] = "Hello!";

In either case, array h has 7 characters, the last one being the null character.

The C language provides many functions for manipulating these “C-style strings”. We don’t study them much
anymore because the “C++ style” STL string library is much more logical and easier to use.

One place we do use them is in file names and command-line arguments, which you will use in Homework 1.

Conversion Between Standard Strings and C-Style String Literals
We regularly convert/cast between C-style & C+-+-style (STL) strings. For example:

std::string s1("Hello!");
std::string s2(h);

where h is as defined above.

You can obtain the C-style string from a standard string using the member function c_str, as in s1.c_str().

http://www.cs.rpi.edu/academics/courses/fall15/csci1200/calendar.php
http://www.cs.rpi.edu/academics/courses/fall15/csci1200/other_information.php
http://www.cs.rpi.edu/academics/courses/fall15/csci1200/schedule.php

2.4

L-Values and R-Values

e Consider the simple code below. String a becomes "Tim". No big deal, right? Wrong!

std::string a = "Kim";
std::string b = "Tom";
al0] = b[0];

e Let’s look closely at the line: al0] = b[0]; and think about what happens.

2.5

2.6

In particular, what is the difference between the use of a[0] on the left hand side of the assignment statement
and b[0] on the right hand side?
Syntactically, they look the same. But,

— The expression b[0] gets the char value, 'T', from string location 0 in b. This is an r-value.

— The expression a[0] gets a reference to the memory location associated with string location 0 in a. This
is an l-value.

— The assignment operator stores the value in the referenced memory location.
The difference between an r-value and an [-value will be especially significant when we get to writing our own
operators later in the semester

What’s wrong with this code?

std::string foo = "hello";
foo[2] = 'X';
cout << foo;
'X' = fool[3];
cout << foo;

Your C++ compiler will complain with something like: “non-lvalue in assignment”

Standard Library (STL) Vectors

Example Motivating Problem: Read an unknown number of grades and compute some basic statistics such as
the mean (average), standard deviation, median (middle value), and mode (most frequently occurring value).

Our solution to this problem will be much more elegant, robust, & less error-prone if we use the STL vector
class. Why would it be more difficult/wasteful /buggy to try to write this using C-style (dumb) arrays?

STL Vectors: a.k.a. “C++-Style”, “Smart” Arrays
Standard library “container class” to hold sequences.
A vector acts like a dynamically-sized, one-dimensional array.

Capabilities:
— Holds objects of any type
— Starts empty unless otherwise specified

— Any number of objects may be added to the end — there is no limit on size.

It can be treated like an ordinary array using the subscripting operator.

A vector knows how many elements it stores! (unlike C arrays)

— There is NO automatic checking of subscript bounds.

e Here’s how we create an empty vector of integers:

std: :vector<int> scores;

e Vectors are an example of a templated container class. The angle brackets < > are used to specify the type of

object (the “template type”) that will be stored in the vector.

e push back is a vector function to append a value to the end of the vector, increasing its size by one. This is
an O(1) operation (on average).

— There is NO corresponding push_front operation for vectors.

e size is a function defined by the vector type (the vector class) that returns the number of items stored in the
vector.

e After vectors are initialized and filled in, they may be treated just like arrays.

— In the line
sum += scores[i];
scores[i] is an “r-value”, accessing the value stored at location i of the vector.
— We could also write statements like
scores[4] = 100;

to change a score. Here scores[4] is an “l-value”, providing the means of storing 100 at location 4 of the
vector.

— It is the job of the programmer to ensure that any subscript value i that is used is legal — at least 0 and
strictly less than scores.size().

2.7 Initializing a Vector — The Use of Constructors

Here are several different ways to initialize a vector:

e This “constructs” an empty vector of integers. Values must be placed in the vector using push_back.
std: :vector<int> a;

e This constructs a vector of 100 doubles, each entry storing the value 3.14. New entries can be created using
push_back, but these will create entries 100, 101, 102, etc.

int n = 100;
std::vector<double> b(100, 3.14);

e This constructs a vector of 10,000 ints, but provides no initial values for these integers. Again, new entries can
be created for the vector using push_back. These will create entries 10000, 10001, etc.

std::vector<int> c(n*n);
e This constructs a vector that is an exact copy of vector b.
std: :vector<double> d(b);

e This is a compiler error because no constructor exists to create an int vector from a double vector. These are
different types.

std::vector<int> e(b);

2.8 Exercises

1. After the above code constructing the three vectors, what will be output by the following statement?
cout << a.size() << endl << b.size() << endl << c.size() << endl;
2. Write code to construct a vector containing 100 doubles, each having the value 55.5.

3. Write code to construct a vector containing 1000 doubles, containing the values 0, 1, v/2, v/3, v/4, /5, etc.
Write it two ways, one that uses push_back and one that does not use push_back.

2.9 Example: Using Vectors to Compute Standard Deviation

Definition: If ag,a1,a9,...,a,—1 is a sequence of n values, and p is the average of these values, then the standard
deviation is

n—1

{Z?_;(ai - m?} :

// Compute the average and standard deviation of an input set of grades.
#include <fstream>

#include <iomanip>

#include <iostream>

#include <vector> // to access the STL vector class

#include <cmath> // to use standard math library and sqrt

int main(int argc, char*x argv[]) {
if (argec !'= 2) {
std::cerr << "Usage: " << argv[0] << " grades-file\n";
return 1;
}
std::ifstream grades_str(argv[1]);
if (!grades_str.good()) {
std::cerr << "Can not open the grades file " << argv[1] << "\n";

return 1;
}
std::vector<int> scores; // Vector to hold the input scores; initially empty.
int x; // Input variable

// Read the scores, appending each to the end of the vector
while (grades_str >> x) { scores.push_back(x); }

// Quit with an error message if too few scores.

if (scores.size() == 0) {
std::cout << "No scores entered. Please try again!" << std::endl;
return 1; // program exits with error code = 1

}

// Compute and output the average value.
int sum = 0;
for (unsigned int i = 0; i < scores.size(); ++ i) {
sum += scores[i];
}
double average = double(sum) / scores.size();
std::cout << "The average of " << scores.size() << " grades is "
<< std::setprecision(3) << average << std::endl;

// Exercise: compute and output the standard deviation.
double sum_sq_diff = 0.0;
for (unsigned int i=0; i<scores.size(); ++i) {

double diff = scores[i] - average;

sum_sq_diff += diffxdiff;
}
double std_dev = sqrt(sum_sq_diff / (scores.size()-1));
std::cout << "The standard_deviation of " << scores.size()

<< " grades is " << std::setprecision(3) << std_dev << std::endl;

return 0; // everything ok

2.10 Standard Library Sort Function
e The standard library has a series of algorithms built to apply to container classes.

e The prototypes for these algorithms (actually the functions implementing these algorithms) are in header file
algorithm.

e One of the most important of the algorithms is sort.

e It is accessed by providing the beginning and end of the container’s interval to sort.

e As an example, the following code reads, sorts and outputs a vector of doubles:

double x;

std: :vector<double> a;

while (std::cin >> x)
a.push_back(x) ;

std::sort(a.begin(), a.end());

for (unsigned int i=0; i < a.size(); ++i)
std::cout << al[i] << '\n';

e a.begin() is an iterator referencing the first location in the vector, while a.end() is an iterator referencing
one past the last location in the vector.

— We will learn much more about iterators in the next few weeks.

— Every container has iterators: strings have begin() and end() iterators defined on them.

e The ordering of values by std::sort is least to greatest (technically, non-decreasing). We will see ways to
change this.

2.11 Example: Computing the Median

The median value of a sequence is less than half of the values in the sequence, and greater than half of the values
in the sequence. If ag,a1,as,...,a,_1 is a sequence of n values AND if the sequence is sorted such that ag < a1 <
as < --+ < ay,_1 then the median is

A(n—1)/2 if n is odd

An/am1 FAn/a Gp e aven
2

// Compute the median value of an input set of grades.
#include <algorithm>

#include <cmath>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <vector>

void read_scores(std::vector<int> & scores, std::ifstream & grade_str) {
int x; // input variable
while (grade_str >> x) {
scores.push_back(x) ;
}
}

void compute_avg_and_std_dev(const std::vector<int>& s, double & avg, double & std_dev) {
// Compute and output the average value.
int sum=0;
for (unsigned int i = 0; i < s.size(); ++ i) {
sum += s[i];
}

avg = double(sum) / s.size();

// Compute the standard deviation

double sum_sq = 0.0;

for (unsigned int i=0; i < s.size(); ++i) {
sum_sq += (s[i]l-avg) * (s[i]l-avg);

}

std_dev = sqrt(sum_sq / (s.size()-1));

double compute_median(const std::vector<int> & scores) {
// Create a copy of the vector
std::vector<int> scores_to_sort(scores);
// Sort the values in the vector. By default this is increasing order.

std: :sort(scores_to_sort.begin(), scores_to_sort.end());

// Now, compute and output the median.
unsigned int n = scores_to_sort.size();

if (n%2 == 0) // even number of scores
return double(scores_to_sort[n/2] + scores_to_sort[n/2-1]) / 2.0;
else

return double(scores_to_sort[n/2]); // same as (n-1)/2 because n is odd

int main(int argc, char* argv[]) {

if (arge !'= 2) {
std::cerr << "Usage: " << argv[0] << " grades-file\n";
return 1;

}

std::ifstream grades_str(argv[1]);

if (!grades_str) {
std::cerr << "Can not open the grades file " << argv[1] << "\n";
return 1;

}

std::vector<int> scores; // Vector to hold the input scores; initially empty.
read_scores(scores, grades_str); // Read the scores, as before

// Quit with an error message if too few scores.

if (scores.size() == 0) {
std::cout << "No scores entered. Please try again!" << std::endl;
return 1;

}

// Compute the average, standard deviation and median
double average, std_dev;
compute_avg_and_std_dev(scores, average, std_dev);
double median = compute_median(scores);

// Output

std::cout << "Among " << scores.size() << " grades: \n"
<< " average = " << std::setprecision(3) << average << '\n'
<< " std_dev = " << std_dev << '\n'
< " median = " << median << std::endl;

return O;

2.12 Passing Vectors (and Strings) As Parameters
The following outlines rules for passing vectors as parameters. The same rules apply to passing strings.
e If you are passing a vector as a parameter to a function and you want to make a (permanent) change to the
vector, then you should pass it by reference.

— This is illustrated by the function read_scores in the program median_grade.

— This is very different from the behavior of arrays as parameters.

e What if you don’t want to make changes to the vector or don’t want these changes to be permanent?
— The answer we’ve learned so far is to pass by value.
— The problem is that the entire vector is copied when this happens! Depending on the size of the vector,
this can be a considerable waste of memory.
e The solution is to pass by constant reference: pass it by reference, but make it a constant so that it can not
be changed.
— This is illustrated by the functions compute_avg_and_std_dev and compute median in the program

median_grade.

e As a general rule, you should not pass a container object, such as a vector or a string, by value because of the
cost of copying.

	String Concatenation and Creation of Temporary String Object
	Character Arrays and String Literals
	Conversion Between Standard Strings and C-Style String Literals
	L-Values and R-Values
	Standard Library (STL) Vectors
	STL Vectors: a.k.a. ``C++-Style'', ``Smart'' Arrays
	Initializing a Vector — The Use of Constructors
	Exercises
	Example: Using Vectors to Compute Standard Deviation
	Standard Library Sort Function
	Example: Computing the Median
	Passing Vectors (and Strings) As Parameters

