
CSCI-1200 Data Structures — Fall 2015

Lecture 5 — Pointers, Arrays, Pointer Arithmetic

Review from Last Week

• C++ class syntax, designing classes, classes vs. structs;

• Passing comparison functions to sort; Non-member operators.

• More fun with const and reference (the ’&’)

Today’s Lecture — Pointers and Arrays

• Pointers store memory addresses.

• They can be used to access the values stored at their stored memory address.

• They can be incremented, decremented, added and subtracted.

• Dynamic memory is accessed through pointers.

• Pointers are also the primitive mechanism underlying vector iterators, which we have used with std::sort and
will use more extensively throughout the semester.

5.1 Pointer Example

• Consider the following code segment:

float x = 15.5;

float *p; /* equiv: float* p; or float * p; */

p = &x;

*p = 72;

if (x > 20)

cout << "Bigger\n";

else

cout << "Smaller\n";

The output is Bigger

because x == 72.0. What’s going on?

Computer memory

Before *p=72

p

x

After *p=72

p

x 72.015.5

5.2 Pointer Variables and Memory Access

• x is an ordinary float, but p is a pointer that can hold the memory address of a float variable. The difference
is explained in the picture above.

• Every variable is attached to a location in memory. This is where the value of that variable is stored. Hence,
we draw a picture with the variable name next to a box that represents the memory location.

• Each memory location also has an address, which is itself just an index into the giant array that is the computer
memory.

• The value stored in a pointer variable is an address in memory. The statement p = &x; takes the address
of x’s memory location and stores it (the address) in the memory location associated with p.

• Since the value of this address is much less important than the fact that the address is x’s memory location,
we depict the address with an arrow.

• The statement: *p = 72; causes the computer to get the memory location stored at p, then go to that
memory location, and store 72 there. This writes the 72 in x’s location.

Note: *p is an l-value in the above expression.

5.3 Defining Pointer Variables

• In the example below, p, s and t are all pointer variables (pointers, for short), but q is NOT. You need the *
before each variable name.

int * p, q;

float *s, *t;

• There is no initialization of pointer variables in this two-line sequence, so the statement below is dangerous,
and may cause your program to crash! (It won’t crash if the uninitialized value happens to be a legal address.)

*p = 15;

5.4 Operations on Pointers

• The unary (single argument/operand) operator * in the expression *p is the “dereferencing operator”. It means
“follow the pointer” *p can be either an l-value or an r-value, depending on which side of the = it appears on.

• The unary operator & in the expression &x means “take the memory address of.”

• Pointers can be assigned. This just copies memory addresses as though they were values (which they are).
Let’s work through the example below (and draw a picture!). What are the values of x and y at the end?

float x=5, y=9;

float *p = &x, *q = &y;

*p = 17.0;

*q = *p;

q = p;

*q = 13.0;

• Assignments of integers or floats to pointers and assignments mixing pointers of different types are illegal.
Continuing with the above example:

int *r;

r = q; // Illegal: different pointer types;

p = 35.1; // Illegal: float assigned to a pointer

• Comparisons between pointers of the form if (p == q) or if (p != q) are legal and very
useful! Less than and greater than comparisons are also allowed. These are useful only when the pointers are
to locations within an array.

5.5 Exercise

• Draw a picture for the following code sequence. What is the output to the screen?

int x = 10, y = 15;

int *a = &x;

cout << x << " " << y << endl;

int *b = &y;

*a = x * *b;

cout << x << " " << y << endl;

int *c = b;

*c = 25;

cout << x << " " << y << endl;

2

5.6 Null Pointers

• Like the int type, pointers are not default initialized. We should assume it’s a garbage value, leftover from
the previous user of that memory.

• Pointers that don’t (yet) point anywhere useful should be explicitly assigned to NULL.

– NULL is equal to the integer 0, which is a legal pointer value (you can store the NULL in a pointer variable).

– But NULL is not a valid memory location you are allowed to read or write. If you try to dereference or
follow a NULL pointer, your program will immediately crash. You may see a segmentation fault, a bus
error, or something about a null pointer dereference.

– NOTE: In C++11 (the server still uses C++03), we are encouraged to switch to use nullptr, to avoid
some subtle situations where NULL is incorrectly seen as an int type instead of a pointer.

– We indicate a NULL value in diagrams with a slash through the memory location box.

• Comparing a pointer to NULL is very useful. It can be used to indicate whether or not a pointer variable is
pointing at a useable memory location. For example,

if (p != NULL)

cout << *p << endl.

tests to see if p is pointing somewhere that appears to be useful before accessing and printing the value stored
at that location.

• But don’t make the mistake of assuming pointers are automatically initialized to NULL.

5.7 Arrays

• Here’s a quick example to remind you about how to use an array:

const int n = 10;

double a[n];

int i;

for (i=0; i<n; ++i)

a[i] = sqrt(double(i));

• Remember: the size of array a is fixed at compile time. STL vectors act like arrays, but they can grow and
shrink dynamically in response to the demands of the application.

5.8 Stepping through Arrays with Pointers (Array Iterators)

• The array code above that uses [] subscripting, can be equivalently rewritten to use pointers:

const int n = 10;

double a[n];

double *p;

for (p=a; p<a+n; ++p)

*p = sqrt(p-a);

• The assignment: p = a; takes the address of the start of the array and assigns it to p.

• This illustrates the important fact that the name of an array is in fact a pointer to the start of a block of
memory. We will come back to this several times! We could also write this line as: p = &a[0]; which
means “find the location of a[0] and take its address”.

• By incrementing, ++p, we make p point to the next location in the array.

– When we increment a pointer we don’t just add one byte to the address, we add the number of bytes
(sizeof) used to store one object of the specific type of that pointer. Similarly, basic addition/subtraction
of pointer variables is done in multiples of the sizeof the type of the pointer.

– Since the type of p is double, and the size of double is 8 bytes, we are actually adding 8 bytes to the
address when we execute ++p.

3

• The test p<a+n checks to see if the value of the pointer (the address) is less than n array locations beyond
the start of the array.

In this example, a+n is the memory location 80 bytes after the start of the array (n = 10 slots * 8 bytes per
slot).

We could equivalently have used the test p != a+n

• In the assignment:

*p = sqrt(p-a)

p-a is the number of array locations (multiples of 8 bytes) between p and the start. This is an integer. The
square root of this value is assigned to *p.

• Here’s a picture to explain this example:

increasing

value

a[4]

a[5]

a[6]

a[7]

a[8]

address

10

double [] a

const int n

double* p

a[2]

a[1]

a[0]

a[3]

a[9]

a[10]

0.00

1.00

1.41

1.73

2.00

2.23

2.45

2.65

2.83

3.00

• Note that there may or may not be unused memory between your array and the other local variables. Similarly,
the order that your local variables appear on the stack is not guaranteed (the compiler may rearrange things
a bit in an attempt to optimize performance or memory usage). A buffer overflow (attempting to access an
illegal array index) may or may not cause an immediate failure – depending on the layout of other critical
program memory.

5.9 Sorting an Array

• Arrays may be sorted using std::sort, just like vectors. Pointers are used in place of iterators. For example,
if a is an array of doubles and there are n values in the array, then here’s how to sort the values in the array
into increasing order:

std::sort(a, a+n);

4

5.10 Exercises

For each of the following problems, you may only use pointers and not subscripting:

1. Write code to print the array a backwards, using pointers.

2. Write code to print every other value of the array a, again using pointers.

3. Write a function that checks whether the contents of an array of doubles are sorted into increasing order. The
function must accept two arguments: a pointer (to the start of the array), and an integer indicating the size of
the array.

5.11 C Calling Convention

• We take for granted the non-trivial task of passing data to a helper function, getting data back from that
function, and seamlessly continuing on with the program. How does that work??

• A calling convention is a standardized method for passing arguments between the caller and the function.
Calling conventions vary between programming languages, compilers, and computer hardware.

• In C on x86 architectures here is a generalization of what happens:

1. The caller puts all the arguments on the stack, in reverse order.

2. The caller puts the address of its code on the stack (the return address).

3. Control is transferred to the callee.

4. The callee puts any local variables on the stack.

5. The callee does its work and puts the return value in a special register (storage location).

6. The callee removes its local variables from the stack.

7. Control is transferred by removing the address of the caller from the stack and going there.

8. The caller removes the arguments from the stack.

• On x86 architectures the addresses on the stack are in descending order. This is not true of all hardware.

5

5.12 Poking around in the Stack & Looking for the C Calling Convention

• Let’s look more closely at an example of where the compiler stores our data. Specifically, let’s print out the
addresses and values of the local variables and function parameters:

int foo(int a, int *b) {

int q = a+1;

int r = *b+1;

std::cout << "address of a = " << &a << std::endl;

std::cout << "address of b = " << &b << std::endl;

std::cout << "address of q = " << &q << std::endl;

std::cout << "address of r = " << &r << std::endl;

std::cout << "value at " << &a << " = " << a << std::endl;

std::cout << "value at " << &b << " = " << b << std::endl;

std::cout << "value at " << b << " = " << *b << std::endl;

std::cout << "value at " << &q << " = " << q << std::endl;

std::cout << "value at " << &r << " = " << r << std::endl;

return q*r;

}

int main() {

int x = 5;

int y = 7;

int answer = foo (x, &y);

std::cout << "address of x = " << &x << std::endl;

std::cout << "address of y = " << &y << std::endl;

std::cout << "address of answer = " << &answer << std::endl;

std::cout << "value at " << &x << " = " << x << std::endl;

std::cout << "value at " << &y << " = " << y << std::endl;

std::cout << "value at " << &answer << " = " << answer << std::endl;

}

• Note that the first function parameters is regular integer, passed by copy. The second parameter is a passed
in as a pointer.

• Note that we can print out data values or pointers – the address is printed as a big integer in hexadecimal
format (beginning with “Ox”). This program was compiled as 32-bit program, so our addresses are 32-bits. A
64-bit program will have longer addresses.

• Let’s look at the program output and reverse engineer
a drawing of the stack:

address of a = 0xbf23eef0

address of b = 0xbf23eef4

address of q = 0xbf23eee4

address of r = 0xbf23eee0

value at 0xbf23eef0 = 5

value at 0xbf23eef4 = 0xbf23ef10

value at 0xbf23ef10 = 7

value at 0xbf23eee4 = 6

value at 0xbf23eee0 = 8

address of x = 0xbf23ef14

address of y = 0xbf23ef10

address of answer = 0xbf23ef0c

value at 0xbf23ef14 = 5

value at 0xbf23ef10 = 7

value at 0xbf23ef0c = 48

• Note: The unlabeled portions in our diagram of the stack
will include the frame pointer, the return address, temp
variables (complex C++ expressions turn into many smaller
steps of assembly), space to save registers, and padding
between variables to meet alignment requirements.

• Note: Different compilers and/or different optimization
levels will produce a different stack diagram.

0xbf23ef10
0xbf23ef0c
0xbf23ef08
0xbf23ef04
0xbf23ef00
0xbf23eefc
0xbf23eef8
0xbf23eef4
0xbf23eef0
0xbf23eeec
0xbf23eee8
0xbf23eee4
0xbf23eee0
0xbf23eedc
0xbf23eed8

0xbf23ef18

48

5
7

5

6
8

0xbf23ef10

y=
x=

b=
a=

q=
r=

answer=

0xbf23ef14

6

	Pointer Example
	Pointer Variables and Memory Access
	Defining Pointer Variables
	Operations on Pointers
	Exercise
	Null Pointers
	Arrays
	Stepping through Arrays with Pointers (Array Iterators)
	Sorting an Array
	Exercises
	C Calling Convention
	Poking around in the Stack & Looking for the C Calling Convention

