Review from Lectures 14 & 15

• How to design and implement algorithms using three steps or stages:
 1. Generating and Evaluating Ideas
 2. Mapping Ideas into Code
 3. Getting the Details Right

Today’s Class — Associative Containers (STL Maps)

• STL Maps: associative containers for fast insert, access and remove
• Example: Counting word occurrences
• STL Pairs
• Map iterators
• Map member functions: \texttt{operator[]}, \texttt{find}, \texttt{insert}, \texttt{erase}.

Efficiency

• STL maps vs. STL vectors vs. STL lists

Reading: Ford & Topp, Sections 11.1 & 11.3; Koenig & Moo, Chapter 7.

16.1 STL Maps: Associative Containers

• STL maps store pairs of “associated” values.
• We will see several examples today, in lab 9, and in Lecture 17:
 – An association between a string, representing a word, and an int representing the number of times that word has been seen in an input file.
 – An association between a string, representing a word, and a vector that stores the line numbers from a text file on which that string occurs (next lecture).
 – An association between a phone number and the name of the person with that number (tomorrow’s lab).
 – An association between a class object representing a student name and the student’s info (next lecture).
• A particular instance of a \texttt{map} is defined (declared) with the syntax:

\begin{verbatim}
std::map\langle\text{key_type}, \text{value_type}\rangle \ var_name
\end{verbatim}

In our first two examples above, \texttt{key_type} is a string. In the first example, the \texttt{value_type} is an \texttt{int} and in the second it is a \texttt{std::vector<int>}.
• Entries in maps are \textit{pairs}:

\begin{verbatim}
std::pair\langle\text{const key_type}, \text{value_type}\rangle
\end{verbatim}

• Map iterators refer to pairs.
• Map search, insert and erase are all very fast: \(O(\log n)\) time, where \(n\) is the number of pairs stored in the map.
• Note: The STL \texttt{map} type has similarities to the Python dictionary, Java HashMap, or a Perl hash, but the data structures \textit{are not the same}. The organization, implementation, and performance is different. In a couple weeks we’ll see an STL data structure that is even more similar to the Python dictionary.
• Map search, insert and erase are \(O(\log n)\). Python dictionaries are \(O(1)\).

First, let’s see how this some of this works with a program to count the occurrences of each word in a file. We’ll look at more details and more examples later.
16.2 Counting Word Occurrences

- Here’s a simple and elegant solution to this problem using a map:

```cpp
#include <iostream>
#include <map>
#include <string>

int main() {
    std::string s;
    std::map<std::string, int> counters; // store each word and an associated counter
    // read the input, keeping track of each word and how often we see it
    while (std::cin >> s)
        ++counters[s];
    // write the words and associated counts
    std::map<std::string, int>::const_iterator it;
    for (it = counters.begin(); it != counters.end(); ++it) {
        std::cout << it->first << "\t" << it->second << std::endl;
    }
    return 0;
}
```

16.3 Maps: Uniqueness and Ordering

- Maps are ordered by increasing value of the key. Therefore, there must be an `operator<` defined for the key.
- Once a key and its value are entered in the map, the key can’t be changed. It can only be erased (together with the associated value).
- Duplicate keys can not be in the map.

16.4 STL Pairs

The mechanics of using `std::pair` are relatively straightforward:

- `std::pair` is a templated `struct` with just two members, called `first` and `second`. Reminder: a struct is basically a wimpy class and in this course you aren’t allowed to create new structs. You should use classes instead.
- To work with pairs, you must `#include <utility>`. Note that the header file for maps (`#include <map>`) itself includes utility, so you don’t have to include utility explicitly when you use pairs with maps.
- Here are simple examples of manipulating pairs:

```cpp
std::pair<int, double> p1(5, 7.5);
std::pair<int, double> p2 = std::make_pair(8, 9.5);
p1.first = p2.first;
p2.second = 13.3;
std::cout << p1.first << " " << p1.second << std::endl;
std::cout << p2.first << " " << p2.second << std::endl;
p1 = p2;

std::pair<const string, double> p3 = std::make_pair(string("hello"), 3.5);
p3.second = -1.5;
// p3.first = string("illegal");    // (a)
// p1 = p3;                        // (b)
```

- The function `std::make_pair` creates a pair object from the given values. It is really just a simplified constructor, and as the example shows there are other ways of constructing pairs.
- Most of the statements in the above code show accessing and changing values in pairs.
• The two statements at the end are commented out because they cause syntax errors:
 – In (a), the first entry of \(p3 \) is \texttt{const}, which means it can’t be changed.
 – In (b), the two pairs are different types! Make sure you understand this.

• Returning to maps, each entry in the map is a pair object of type:

 \[
 \texttt{std::pair<const key_type, value_type>}
 \]

 The const is needed to ensure that the keys aren’t changed! This is crucial because maps are sorted by keys!

16.5 Maps: \texttt{operator[]}

• We’ve used the \texttt{[]} operator on vectors, which is conceptually very simple because vectors are just resizable arrays. Arrays and vectors are efficient \emph{random access data structures}.

• But \texttt{operator[]} is actually a function call, so it can do things that aren’t so simple too, for example:

 \[
 \texttt{++counters[s];}
 \]

• For maps, the \texttt{[]} operator searches the map for the pair containing the key (string) \(s \).
 – If such a pair containing the key is \texttt{not} there, the operator:
 1. creates a pair containing the key and a default initialized value,
 2. inserts the pair into the map in the appropriate position, and
 3. returns a reference to the value stored in this new pair (the second component of the pair).

 This second component may then be changed using \texttt{operator++}.
 – If a pair containing the key \texttt{is} there, the operator simply returns a reference to the value in that pair.

• In this particular example, the result in either case is that the \texttt{operator[]} increments the value associated with string \(s \) (to 1 if the string wasn’t already a pair in the map).

• For the user of the map, \texttt{operator[]} makes the map feel like a vector, except that indexing is based on a \texttt{string} (or any other key) instead of an int.

• Note that the result of using \texttt{[]} is that the key is ALWAYS in the map afterwards.

16.6 Map Iterators

• Iterators may be used to access the map contents sequentially. Maps provide \texttt{begin()} and \texttt{end()} functions for accessing the bounding iterators. Map iterators have \texttt{++} and \texttt{--} operators.

• Each iterator refers to a pair stored in the map. Thus, given map iterator \(\texttt{it} \), \(\texttt{it->first} \) is a \texttt{const string} and \(\texttt{it->second} \) is an \texttt{int}. Notice the use of \texttt{it->}, and remember it is just shorthand for \(\texttt{(*it)} \).

16.7 Exercise

Write code to create a map where the key is an integer and the value is a double. (Yes, an integer key!) Store each of the following in the map: 100 and its sqrt, 100,000 and its sqrt, 5 and its sqrt, and 505 and its sqrt. Write code to output the contents of the map. Draw a picture of the map contents. What will the output be?
16.8 Map Find

- One of the problems with `operator[]` is that it always places a key / value pair in the map. Sometimes we don’t want this and instead we just want to check if a key is there.

- The `find` member function of the map class does this for us. For example:
  ```cpp
  m.find(key);
  ```
 where `m` is the map object and `key` is the search key. It returns a map iterator:

 If the key is in one of the pairs stored in the map, `find` returns an iterator referring to this pair.
 If the key is not in one of the pairs stored in the map, `find` returns `m.end()`.

16.9 Map Insert

- The prototype for the map `insert` member function is:
  ```cpp
  m.insert(std::make_pair(key, value));
  ```
 `insert` returns a pair, but not the pair we might expect. Instead it is pair of a map iterator and a bool:
  ```cpp
  std::pair<map<key_type, value_type>::iterator, bool>
  ```
 - The `insert` function checks to see if the key being inserted is already in the map.
 - If so, it does not change the value, and returns a (new) pair containing an iterator referring to the *existing pair* in the map and the bool value `false`.
 - If not, it enters the pair in the map, and returns a (new) pair containing an iterator referring to the *newly added pair* in the map and the bool value `true`.

16.10 Map Erase

Maps provide three different versions of the erase member function:

- `void erase(iterator p)` — erase the pair referred to by iterator `p`.
- `void erase(iterator first, iterator last)` — erase all pairs from the map starting at `first` and going up to, but not including, `last`.
- `size_type erase(const key_type& k)` — erase the pair containing key `k`, returning either 0 or 1, depending on whether or not the key was in a pair in the map

16.11 Exercise

Re-write the `word_count` program so that it uses `find` and `insert` instead of `operator[]`.

16.12 Choices of Containers

- We can solve this word counting problem using several different approaches and different containers:
 - a vector or list of strings
 - a vector or list of pairs (string and int)
 - a map
 - ?
- How do these approaches compare? Which is cleanest, easiest, and most efficient, etc.?