CSCI-1200 Data Structures — Fall 2015
Lecture 19 — Trees, Part 11

Review from Lecture 18 and Lab 10
e Binary Trees, Binary Search Trees, & Balanced Trees
e STL set container class (like STL map, but without the pairs!)
e Finding the smallest element in a BST.

e Overview of the ds_set implementation: begin and find.

Today’s Lecture
e Warmup / Review: destroy_tree
e A very important ds_set operation insert
e In-order, pre-order, and post-order traversal; Breadth-first and depth-first tree search

e Finding the in-order successor of a binary tree node, tree itertor increment

19.1 Warmup Exercise

e Write the ds_set: :destroy_tree private helper function.

19.2 Insert

e Move left and right down the tree based on comparing keys. The goal is to find the location to do an insert
that preserves the binary search tree ordering property.

e We will always be inserting at an empty (NULL) pointer location.
Exercise: Why does this work? Is there always a place to put the new item?
Is there ever more than one place to put the new item?

e IMPORTANT NOTE: Passing pointers by reference ensures that the new node is truly inserted into the tree.
This is subtle but important.

e Note how the return value pair is constructed.

Exercise: How does the order that the nodes are inserted affect the final tree structure? Give an ordering that
produces a balanced tree and an insertion ordering that produces a highly unbalanced tree.



19.3 In-order, Pre-Order, Post-Order Traversal

e One of the fundamental tree operations is “traversing” the nodes in the tree and doing something at each node.
The “doing something”, which is often just printing, is referred to generically as “visiting” the node.

e There are three general orders in which binary trees are traversed: pre-order, in-order and post-order.

e In order to explain these, let’s first draw an “exactly balanced” binary search tree with the elements 1-7:

— What is the in-order traversal of this tree? Hint: it is monotonically increasing, which is always true for
an in-order traversal of a binary search tree!

— What is the post-order traversal of this tree? Hint, it ends with “4” and the 3rd element printed is “2”.

— What is the pre-order traversal of this tree? Hint, the last element is the same as the last element of the
in-order traversal (but that is not true in general! why not?)

e What is the traversal order of the destroy_tree function we wrote earlier?

e Now let’s write code to print out the elements in a binary tree in each of these three orders. These functions
are easy to write recursively, and the code for the three functions looks amazingly similar. Here’s the code for
an in-order traversal to print the contents of a tree:

void print_in_order (ostream& ostr, const TreeNode<T>* p) {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}

How would you modify this code to perform pre-order and post-order traversals?

19.4 Depth-first vs. Breadth-first Search

e We should also discuss two other important tree traversal terms related to problem solving and searching.
— In a depth-first search, we greedily follow links down into the tree, and don’t backtrack until we have hit
a leaf.
When we hit a leaf we step back out, but only to the last decision point and then proceed to the next leaf.

This search method will quickly investigate leaf nodes, but if it has made “incorrect” branch decision early
in the search, it will take a long time to work back to that point and go down the “right” branch.



— In a breadth-first search, the nodes are visited with priority based on their distance from the root, with
nodes closer to the root visited first.

In other words, we visit the nodes by level, first the root (level 0), then all children of the root (level 1),
then all nodes 2 links from the root (level 2), etc.

If there are multiple solution nodes, this search method will find the solution node with the shortest path
to the root node.

However, the breadth-first search method is memory-intensive, because the implementation must store all
nodes at the current level — and the worst case number of nodes on each level doubles as we progress down
the tree!

e Both depth-first and breadth-first will eventually visit all elements in the tree.

e Note: The ordering of elements visited by depth-first and breadth-first is not fully specified.

— In-order, pre-order, and post-order are all examples of depth-first tree traversals.

— What is a breadth-first traversal of the elements in our sample binary search tree above?

19.5 General-Purpose Breadth-First Search/Tree Traversal

e Write an algorithm to print the nodes in the tree one tier at a time, that is, in a breadth-first manner.

e What is the best/average/worst-case running time of this algorithm? What is the best/average/worst-case
memory usage of this algorithm? Give a specific example tree that illustrates each case.

19.6 Tree Iterator Increment/Decrement - Implementation Choices

e The increment operator should change the iterator’s pointer to point to the next TreeNode in an in-order
traversal — the “in-order successor” — while the decrement operator should change the iterator’s pointer to
point to the “in-order predecessor”.

e Unlike the situation with lists and vectors, these predecessors and successors are not necessarily “nearby”
(either in physical memory or by following a link) in the tree, as examples we draw in class will illustrate.
e There are two common solution approaches:
— Each node stores a parent pointer. Ounly the root node has a null parent pointer. [method 1]

— Each iterator maintains a stack of pointers representing the path down the tree to the current node.
[method 2]



e If we choose the parent pointer method, we’ll need to rewrite the insert and erase (which we’ll write next
time!) member functions to correctly adjust parent pointers.

e Although iterator increment looks expensive in the worst case for a single application of operator++, it is fairly
easy to show that iterating through a tree storing n nodes requires O(n) operations overall.

Exercise: [method 1] Write a fragment of code that given a node, finds the in-order successor using parent pointers.
Be sure to draw a picture to help you understand!

Exercise: [method 2] Write a fragment of code that given a tree iterator containing a pointer to the node and a
stack of pointers representing path from root to node, finds the in-order successor (without using parent pointers).

Exercise: What are the advantages & disadvantages of each method?
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// TREE NODE CLASS
template <class T>
class TreeNode {
public:
TreeNode() : left(NULL), right(NULL)/*, parent(NULL)*/ {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL)/*, parent(NULL)*/ {}
T value;
TreeNodex left;
TreeNode* right;
// one way to allow implementation of iterator increment & decrement
// TreeNode* parent;
};

B
// TREE NODE ITERATOR CLASS
template <class T>
class tree_iterator {
public:
tree_iterator() : ptr_(NULL) {}
tree_iterator(TreeNode<T>* p) : ptr_(p) {}
tree_iterator(const tree_iterator& old) : ptr_(old.ptr_) {3}
“tree_iterator() {}
tree_iterator& operator=(const tree_iterator& old) { ptr_ = old.ptr_; return *this; }
// operator* gives constant access to the value at the pointer
const T& operator*() const { return ptr_->value; }
// comparions operators are straightforward
bool operator== (const tree_iterator& rgt) { return ptr_ == rgt.ptr_; }
bool operator!= (const tree_iterator& rgt) { return ptr_ != rgt.ptr_; }
// increment & decrement operators
tree_iterator<T> & operator++() { /* discussed & implemented in Lecture 20 */

return *this;
}
tree_iterator<T> operator++(int) { tree_iterator<T> temp(*this); ++(*this); return temp;
tree_iterator<T> & operator--() { /* implementation omitted */ }
tree_iterator<T> operator--(int) { tree_iterator<T> temp(*this); --(*this); return temp;

private:
// representation
TreeNode<T>* ptr_;
+;
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// DS_SET CLASS
template <class T>
class ds_set {
public:
ds_set() : root_(NULL), size_(0) {}

ds_set(const ds_set<T>& o0ld) : size_(old.size_) { root_ = this->copy_tree(old.root_,NULL); }

“ds_set() { this->destroy_tree(root_); root_ = NULL; }
ds_set& operator=(const ds_set<T>& old) { /* implementation omitted */ }

typedef tree_iterator<T> iterator;

int size() const { return size_; }
bool operator==(const ds_set<T>& old) const { return (old.root_ == this->root_); }

}

}



// FIND, INSERT & ERASE

iterator find(const T& key_value) { return find(key_value, root_); }

std::pair< iterator, bool > insert(T const& key_value) { return insert(key_value, root_); }
int erase(T const& key_value) { return erase(key_value, root_); }

// OUTPUT & PRINTING

friend std::ostream& operator<< (std::ostream& ostr, const ds_set<T>& s) {
s.print_in_order(ostr, s.root_);
return ostr;

}

// ITERATORS

iterator begin() const {
if (!'root_) return iterator (NULL);
TreeNode<T>* p = root_;
while (p->left) p = p->left;
return iterator(p);

}

iterator end() const { return iterator(NULL); }

private:
// REPRESENTATION
TreeNode<T>* root_;
int size_;

// PRIVATE HELPER FUNCTIONS
TreeNode<T>* copy_tree(TreeNode<T>* old_root) { /* Implemented in Lab 10 */ }
void destroy_tree(TreeNode<T>* p) {

/* Implemented in Lecture 19 */

}
iterator find(const T& key_value, TreeNode<T>* p) { /* Implemented in Lecture 18 */ }

std: :pair<iterator,bool> insert(const T& key_value, TreeNode<T>*& p) {
// NOTE: will need revision to support & maintain parent pointers
if (Ip) {
p = new TreeNode<T>(key_value) ;
this->size_++;
return std::pair<iterator,bool>(iterator(p), true);
}
else if (key_value < p->value)
return insert(key_value, p->left);
else if (key_value > p->value)
return insert(key_value, p->right);
else
return std::pair<iterator,bool>(iterator(p), false);

}
int erase(T const& key_value, TreeNode<T>* &p) { /* Implemented in Lecture 20 */ }

void print_in_order(std::ostream& ostr, const TreeNode<T>* p) const {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}



