
CSCI-1200 Data Structures — Fall 2015

Lecture 28 — Concurrency & Asynchronous Computing

Final Exam General Information

• The final exam will be held: Monday Dec. 21 from 3-6pm. Your room & zone assignment will
be posted on the homework server.

A makeup exam will only be offered if required by the RPI rules regarding final exam conflicts -OR- if a written
excuse from the Dean of Students office is provided. Contact Professor Cutler by email immediately if you have
a conflict.

• Coverage: Lectures 1-28, Labs 1-14, and HW 1-10.

• Closed-book and closed-notes except for 2 sheets of 8.5x11 inch paper (front & back) that may be handwritten
or printed. Computers, cell-phones, music players, and other electronic equipment are not permitted and must
be turned off.

• All students must bring their Rensselaer photo ID card.

• The best thing you can do to prepare for the final is practice. Try the review problems (posted on the course
website) with pencil & paper first. Then practice programming (with a computer) the exercises and other
exercises from lecture, lab, homework and the textbook. Solutions to the review problems will be a day or two
before the final exam.

• Please check the homework submission server data entry for your grades early next week. Email your lab TA
if there is any error before the final exam.

Review from Lecture 27

• What is garbage? Memory which cannot (or should not) be accessed by the program and is available for reuse.

• Explicit memory management (C++) vs. automatic garbage collection.

• Reference Counting, Stop & Copy, Mark-Sweep.

• Cyclical data structures, memory overhead, incremental vs. pause in execution, ratio of good to garbage,
defragmentation.

• Smart Pointers

28.1 Today’s Class

• Computing with multiple threads/processes and one or more processors

• Shared resources & mutexes/locks

• Deadlock: the Dining Philosopher’s Problem

28.2 The Role of Time in Evaluation

• Sometimes the order of evaluation does matter, and sometimes it doesn’t.

– The behavior of objects with state depends on sequence of events that have occurred.

– Referential transparency: when equivalent expressions can be substituted for one another without changing
the value of the expression. For example, a complex expression can be replaced with its result if repeated
evaluations always yield the same result, independent of context.

• What happens when objects don’t change one at a time but rather act concurrently?

– We may be able to take advantage of this by letting threads/processes run at the same time
(a.k.a., in parallel).

– However, we will need to think carefully about the interactions and shared resources.



28.3 Concurrency Example: Joint Bank Account

• Consider the following bank account implementation:

class Account {

public:

Account(int amount) : balance(amount) {}

void deposit(int amount) {

int tmp = balance; // A

tmp += amount; // B

balance = tmp; // C

}

void withdraw(int amount) {

int tmp = balance; // D

if (amount > tmp)

cout << "Error: Insufficient Funds!" << endl; // E1

else {

tmp -= amount; // E2

}

balance = tmp; // F

}

private:

int balance;

};

• We create a joint account that will be used by two people (threads/processes):

Account account(100);

• Now, enumerate all of the possible interleavings of the sub-expressions (A-F) if the following two function calls
were to happen concurrently. What are the different outcomes?

account.deposit(50);

account.withdraw(125);

• What if instead the actions were:

account.deposit(50);

account.withdraw(75);

28.4 Correct/Acceptable Behavior of Concurrent Programs

• No two operations that change any shared state variables may occur at the same time.

– Certain low-level operations are guaranteed to execute atomic-ly (from start to finish without interruption),
but this varies based on the hardware and operating system. We need to know which operations are atomic
on our hardware.

– In the bank account example we cannot assume that the deposit and withdraw functions are atomic.

• The concurrent system should produce the same result as if the threads/processes had run sequentially in some
order.

– We do not require that the threads/processes run sequentially, only that they produce results as if they
had run sequentially.

– Note: There may be more than one correct result!

• Exercise: What are the acceptable outcomes for the bank account example?

2



28.5 Serialization via a Mutex

• We can serialize the important interactions using a primitive, atomic synchronization method called a mutex.

• Once one thread has acquired the mutex (locking the resource), no other thread can acquire the mutex until it
has been released.

• In the example below we use the STL mutex object (#include <mutex>). If the mutex is unavailable, the
call to the mutex member function lock() blocks (the thread pauses at that line of code until the mutex is
available).

class Chalkboard {

public:

Chalkboard() { }

void write(Drawing d) {

board.lock();

drawing = d;

board.unlock();

}

Drawing read() {

board.lock();

Drawing answer = drawing;

board.unlock();

return answer;

}

private:

Drawing drawing;

std::mutex board;

};

• What does the mutex do in this code?

28.6 The Professor & Student Classes

• Here are two simple classes that can communicate through a shared Chalkboard object:

class Professor {

public:

Professor(Chalkboard *c) { chalkboard = c; }

virtual void Lecture(const std::string &notes) {

chalkboard->write(notes);

}

protected:

Chalkboard* chalkboard;

};

class Student {

public:

Student(Chalkboard *c) { chalkboard = c; }

void TakeNotes() {

Drawing d = chalkboard->read();

notebook.push_back(d);

}

private:

Chalkboard* chalkboard;

std::vector<Drawing> notebook;

};

3



28.7 Launching Concurrent Threads

• So how exactly do we get multiple streams of computation happening simultaneously? There are many choices
(may depend on your programming language, operating system, compiler, etc.).

• We’ll use the STL thread library (#include <thread>). The new thread begins execution in the provided
function (student thread, in this example). We pass the necessary shared data from the main thread to the
secondary thread to facilitate communication.

#define num_notes 10

void student_thread(Chalkboard *chalkboard) {

Student student(chalkboard);

for (int i = 0; i < num_notes; i++) {

student.TakeNotes();

}

}

int main() {

Chalkboard chalkboard;

Professor prof(&chalkboard);

std::thread student(student_thread, &chalkboard);

for (int i = 0; i < num_notes; i++) {

prof.Lecture("blah blah");

}

student.join();

}

• The join command pauses to wait for the secondary thread to finish computation before continuing with the
program (or exiting in this example).

• What can still go wrong? How can we fix it?

28.8 Condition Variables

• Here we’ve added a condition variable, student done:

class Chalkboard {

public:

Chalkboard() { student_done = true; }

void write(Drawing d) {

while (1) {

board.lock();

if (student_done) {

drawing = d;

student_done = false;

board.unlock();

return;

}

board.unlock();

}

}

Drawing read() {

while (1) {

board.lock();

if (!student_done) {

Drawing answer = drawing;

student_done = true;

board.unlock();

return answer;

}

board.unlock();

}

}

4



private:

Drawing drawing;

std::mutex board;

bool student_done;

};

• Note: This implementation is actually quite inefficient due to “busy waiting”. A better solution is to use a
operating system-supported condition variable that yields to other threads if the lock is not available and is
signaled when the lock becomes available again. STL has a condition_variable type which allows you to
wait for or notify other threads that it may be time to resume computation.

28.9 Exercise: Multiple Students and/or Multiple Professors

• Now consider that we have multiple students and/or multiple professors. How can you ensure that each student
is able to copy a complete set of notes?

28.10 Multiple Locks & Deadlock

• For this last example, we add two public member variables of type std::mutex to the Chalkboard class, named
chalk and textbook.

• And we derive two different types of lecturer from the base class Professor. The professors can lecture
concurrently, but they must share the chalk and the book.

class CautiousLecturer : public Professor {

public:

CautiousLecturer(Chalkboard *c) : Professor(c) {}

void Lecture() {

chalkboard->textbook.lock();

Drawing d = FromBookDrawing();

chalkboard->chalk.lock();

Professor::Lecture(d);

chalkboard->chalk.unlock();

chalkboard->textbook.unlock();

}

};

void checkDrawing(const Drawing &d) {}

class BrashLecturer : public Professor {

public:

BrashLecturer(Chalkboard *c) : Professor(c) {}

void Lecture() {

chalkboard->chalk.lock();

Drawing d = FromMemoryDrawing();

Professor::Lecture(d);

chalkboard->textbook.lock();

checkDrawing(d);

chalkboard->textbook.unlock();

chalkboard->chalk.unlock();

}

};

• What can go wrong? How can we fix it?
Why might philosophers discuss this problem over dinner?

5



28.11 Topics Covered

• Algorithm analysis: big O notation; best case, average case, or worst case; algorithm running time or additional
memory usage

• STL classes: string, vector, list, map, & set, (we talked about but did not practice using STL stack,
queue, unordered_set, unordered_map, & priority_queue)

• C++ Classes: constructors (default, copy, & custom argument), assignment operator, & destructor, classes
with dynamically-allocated memory, operator overloading, inheritance, polymorphism

• Subscripting (random-access, pointer arithmetic) vs. iteration

• Recursion & problem solving techniques

• Memory: pointers & arrays, heap vs. stack, dynamic allocation & deallocation of memory, garbage collection,
smart pointers

• Implementing data structures: resizable arrays (vectors), linked lists (singly-linked, doubly-linked, circularly-
linked, dummy head/tail nodes), trees (for sets & maps), hash sets

• Binary Search Trees, tree traversal (in-order, pre-order, post-order, depth-first, & breadth-first)

• Hash tables (hash functions, collision resolution), priority queues, heap as a vector, merging heaps, leftist heaps

• Exceptions, concurrency & asynchronous computing

28.12 Course Summary

• Approach any problem by studying the requirements carefully, playing with hand-generated examples to un-
derstand them, and then looking for analogous problems that you already know how to solve.

• STL offers container classes and algorithms that simplify the programming process and raise your conceptual
level of thinking in designing solutions to programming problems. Just think how much harder some of the
homework problems would have been without generic container classes!

• When choosing between algorithms and between container classes (data structures) you should consider:

– efficiency,

– naturalness of use, and

– ease of programming.

• Use classes with well-designed public and private member functions to encapsulate sections of code.

• Writing your own container classes and data structures usually requires building linked structures and managing
memory through the big three:

– copy constructor,

– assignment operator, and

– destructor.

• When testing and debugging:

– Test one function and one class at a time,

– Figure out what your program actually does, not what you wanted it to do,

– Use small examples and boundary conditions when testing, and

– Find and fix the first mistake in the flow of your program before considering other apparent mistakes.

• Above all, remember the excitement and satisfaction when your hard work and focused debugging is rewarded
with a program that demonstrates your technical mastery and realizes your creative problem solving skills!

6


	Today's Class
	The Role of Time in Evaluation
	Concurrency Example: Joint Bank Account
	Correct/Acceptable Behavior of Concurrent Programs
	Serialization via a Mutex
	The Professor & Student Classes
	Launching Concurrent Threads
	Condition Variables
	Exercise: Multiple Students and/or Multiple Professors
	Multiple Locks & Deadlock
	Topics Covered
	Course Summary

