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Actor Languages Summary 
•  Actors are concurrent entities that react to messages. 

–  State is completely encapsulated. There is no shared memory! 
–  Message passing is asynchronous. 
–  Actors can create new actors.  Run-time has to ensure fairness. 

•  AMST extends the call by value lambda calculus with actor primitives.  
State is modeled as function arguments.  Actors use ready to receive 
new messages. 

•  SALSA extends an object-oriented programming language (Java) with 
universal actors.  State is explicit, encapsulated in instance variables.  
Control loop is implicit: ending a message handler, signals readiness to 
receive a new message.  Actors are garbage-collected. 

•  Erlang extends a functional programming language core with processes 
that run arbitrary functions.  State is implicit in the function’s 
arguments.  Control loop is explicit:  actors use receive to get a 
message, and tail-form recursive call to continue.  Ending a function 
denotes process (actor) termination. 



Tree Product Behavior in AMST 
Btreeprod = 

 rec(λb.λm. 
  seq(if(isnat(tree(m)), 

    send(cust(m),tree(m)), 

    let newcust=new(Bjoincont(cust(m))), 

    lp = new(Btreeprod), 

    rp = new(Btreeprod) in 
    seq(send(lp, 

    pr(left(tree(m)),newcust)), 

        send(rp, 

    pr(right(tree(m)),newcust)))), 

      ready(b))) 
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Join Continuation in AMST 
 

 
Bjoincont = 

 λcust.λfirstnum.ready(λnum. 

   seq(send(cust,firstnum*num), 

       ready(sink))) 
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Tree Product Behavior in SALSA 

module treeprod; 
 
behavior TreeProduct { 
 
    void compute(Tree t, UniversalActor c){ 
      if (t.isLeaf()) c <- result(t.value()); 
      else { 
        JoinCont newCust = new JoinCont(c); 
        TreeProduct lp = new TreeProduct(); 
        TreeProduct rp = new TreeProduct(); 
        lp <- compute(t.left(), newCust); 
        rp <- compute(t.right(), newCust); 
      } 
   } 
 
} 
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Join Continuation in SALSA 

module treeprod; 
behavior JoinCont { 
 
    UniversalActor cust; 
    int first; 
    boolean receivedFirst; 
 
    JoinCont(UniversalActor cust){ 
      this.cust = cust; 
      this.receivedFirst = false; 
    } 
 
    void result(int v) { 
      if (!receivedFirst){ 
        first = v; receivedFirst = true; 
      } 
      else // receiving second value 
        cust <- result(first*v); 
    } 
} 



Tree Product Behavior in Erlang 
-module(treeprod). 
-export([treeprod/0,join/1]). 
 

treeprod() ->  
  receive 
    {{Left, Right}, Customer} -> 
       NewCust = spawn(treeprod,join,[Customer]), 
       LP = spawn(treeprod,treeprod,[]), 
       RP = spawn(treeprod,treeprod,[]), 

       LP!{Left,NewCust}, 
       RP!{Right,NewCust}; 
    {Number, Customer} ->  
       Customer ! Number 
  end, 
  treeprod(). 

 
join(Customer) -> receive V1 -> receive V2 -> Customer ! V1*V2 end end. 
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Concurrency Control in SALSA 

•  SALSA provides three main coordination constructs: 
–  Token-passing continuations 

•  To synchronize concurrent activities 
•  To notify completion of message processing 
•  Named tokens enable arbitrary synchronization (data-flow) 

–  Join blocks 
•  Used for barrier synchronization for multiple concurrent 

activities 
•  To obtain results from otherwise independent concurrent 

processes 
–  First-class continuations 

•  To delegate producing a result to a third-party actor 
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Token Passing Continuations 
•  @ syntax using token as an argument is syntactic sugar. 

–  Example 1: 
a1 <- m1() @  
a2 <- m2( token ); 

is syntactic sugar for: 
token t = a1 <- m1();  
a2 <- m2( t ); 
 

–  Example 2: 
a1 <- m1() @  
a2 <- m2(); 

is syntactic sugar for: 
token t = a1 <- m1();  
a2 <- m2():waitfor( t ); 
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Named Tokens 
•  Tokens can be named to enable more loosely-

coupled synchronization 

–  Example: 

token t1 = a1 <- m1();  
token t2 = a2 <- m2(); 
token t3 = a3 <- m3( t1 );  
token t4 = a4 <- m4( t2 ); 
a <- m(t1,t2,t3,t4); 
 

Sending m(…) to a will be delayed until 
messages m1()..m4()  have been 
processed.   m1() can proceed 
concurrently with m2(). 
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Join Blocks 

•  Provide a mechanism for synchronizing the processing of a set of 
messages. 

•  Set of results is sent along as a token containing an array of results. 
–  Example: 

UniversalActor[] actors = { searcher0, searcher1,  
               searcher2, searcher3 }; 

join {  
 for (int i=0; i < actors.length; i++){ 
     actors[i] <- find( phrase ); 
  } 
} @ resultActor <- output( token ); 
 
Send the find( phrase ) message to each actor in actors[] then after all 

have completed send the result to resultActor as the argument of an 
output( … ) message. 
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First Class Continuations 

•  Enable actors to delegate computation to a third party independently of 
the processing context. 

•  For example: 
 
  int m(…){ 
    b <- n(…) @ currentContinuation; 

  } 
Ask (delegate) actor b to respond to this message m on behalf of current actor 

(self) by processing b’s message n. 
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Tree Product Behavior Revisited 

module treeprod; 
 
behavior JoinTreeProduct { 
 
    int multiply(Object[] results){  
      return (Integer) results[0] * (Integer) results[1];  
    } 
 
    int compute(Tree t){ 
      if (t.isLeaf()) return t.value(); 
      else { 
        JoinTreeProduct lp = new JoinTreeProduct(); 
        JoinTreeProduct rp = new JoinTreeProduct(); 
        join { 
          lp <- compute(t.left()); 
          rp <- compute(t.right()); 
        } @ multiply(token) @ currentContinuation; 
      } 
    } 
} 

Notice we use token-passing 
continuations (@,token), a 

join block (join), and a first-
class continuation 

(currentContinuation).!
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Concurrency control in Erlang 

•  Erlang uses a selective receive mechanism to help 
coordinate concurrent activities: 
–  Message patterns and guards 

•  To select the next message (from possibly many) to execute. 
•  To receive messages from a specific process (actor). 
•  To receive messages of a specific kind (pattern). 

–  Timeouts 
•  To enable default activities to fire in the absence of messages 

(following certain patterns). 
•  To create timers. 

–  Zero timeouts (after 0) 
•  To implement priority messages, to flush a mailbox. 



Selective Receive 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
end 

receive suspends until a message in the actor’s mailbox 
matches any of the patterns including optional guards. 

•  Patterns are tried in order.  On a match, the message is 
removed from the mailbox and the corresponding pattern’s 
actions are executed. 

•  When a message does not match any of the patterns, it is 
left in the mailbox for future receive actions. 
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Selective Receive Example 
Example program and mailbox (head at top): 
 
receive 

    msg_b -> … 
end 

receive tries to match msg_a and fails.  msg_b can be 
matched, so it is processed.  Suppose execution continues: 

 
receive 

    msg_c -> … 
    msg_a -> … 
end 
The next message to be processed is msg_a since it is the 

next in the mailbox and it matches the 2nd pattern. 
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Receiving from a specific actor 
 
Actor ! {self(), message} 

 

self() is a Built-In-Function (BIF) that returns the current 
(executing) process id (actor name).  Ids can be part of a 
message. 

 
receive 

    {ActorName, Msg} when ActorName == A1 -> 
       … 
end 

receive can then select only messages that come from a 
specific actor, in this example, A1.  (Or other actors that 
know A1’s actor name.) 
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Receiving a specific kind of 
message  

 
counter(Val) -> 
  receive 

    increment -> counter(Val+1); 
    {From,value} ->  
      From ! {self(), Val}, 
      counter(Val); 
    stop -> true; 
    Other -> counter(Val) 

  end. 

 
counter is a behavior that can receive increment 

messages, value request messages, and stop messages.  
Other message kinds are ignored. 
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increment is an atom 
whereas Other is a 

variable (that matches 
anything!). !



Order of message patterns matters 
 
receive 
    {{Left, Right}, Customer} -> 

       NewCust = spawn(treeprod,join,[Customer]), 
       LP = spawn(treeprod,treeprod,[]), 
       RP = spawn(treeprod,treeprod,[]), 
       LP!{Left,NewCust}, 
       RP!{Right,NewCust}; 
    {Number, Customer} ->  

       Customer ! Number 
end 

 
In this example, a binary tree is represented as a tuple 
{Left, Right}, or as a Number, e.g.,  

         {{{5,6},2},{3,4}} 
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{Left,Right} is a 
more specific pattern 
than Number is (which 
matches anything!).  
Order of patterns is 

important.!



Selective Receive with Timeout 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
    after TimeOutExpr -> 
       ActionsT 
end 

TimeOutExpr evaluates to an integer interpreted as 
milliseconds. 

If no message has been selected within this time, the timeout 
occurs and ActionsT are scheduled for evaluation. 

A timeout of infinity means to wait indefinitely.   
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Timer Example 
 
sleep(Time) -> 
       receive 

          after Time -> 
             true 
       end. 

 

sleep(Time) suspends the current actor for Time 
milliseconds. 
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Timeout Example 
receive 
    click -> 
       receive 

           click ->  
             double_click 
       after double_click_interval() -> 
             single_click 
       end 
    ... 

end 

double_click_interval evaluates to the number of 
milliseconds expected between two consecutive mouse 
clicks, for the receive to return a double_click.  
Otherwise, a single_click is returned. 
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Zero Timeout 
receive 
    MessagePattern1 [when Guard1] -> 
       Actions1 ; 

    MessagePattern2 [when Guard2] -> 
       Actions2 ; 
    … 
    after 0 -> 
       ActionsT 
end 

A timeout of 0 means that the timeout will occur 
immediately, but Erlang tries all messages currently in the 
mailbox first. 
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Zero Timeout Example 
 
flush_buffer() -> 
       receive 

          AnyMessage -> 
             flush_buffer() 
          after 0 -> 
             true 
       end. 
 

flush_buffer() completely empties the mailbox of the 
current actor. 
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Priority Messages 
 
priority_receive() -> 
       receive 

          interrupt -> 
             interrupt 
          after 0 -> 
             receive 
                AnyMessage -> 
                   AnyMessage 

             end 
       end. 
 

priority_receive() will return the first message in 
the actor’s mailbox, except if there is an interrupt 
message, in which case, interrupt will be given 
priority. 
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Overview of  
programming distributed systems 

•  It is harder than concurrent programming! 
•  Yet unavoidable in today’s information-oriented society, e.g.: 

–  Internet, mobile devices 
–  Web services 
–  Cloud computing 

•  Communicating processes with independent address spaces 
•  Limited network performance 

–  Orders of magnitude difference between WAN, LAN, and intra-machine 
communication. 

•  Localized heterogeneous resources, e.g, I/O, specialized devices. 
•  Partial failures, e.g. hardware failures, network disconnection 
•  Openness:  creates security, naming, composability issues. 
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SALSA Revisited 
•  SALSA 

–  Simple Actor Language System and 
Architecture 

–  An actor-oriented language for mobile and 
internet computing 

–  Programming abstractions for internet-based 
concurrency, distribution, mobility, and 
coordination 

C. Varela and G. Agha, “Programming dynamically reconfigurable 
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA 
2001 Intriguing Technology Track, 36(12), pp 20-34. 

 
•  Advantages for distributed computing 

–  Actors encapsulate state and concurrency:   
•  Actors can run in different machines. 
•  Actors can change location dynamically. 

–  Communication is asynchronous: 
•  Fits real world distributed systems. 

–  Actors can fail independently. 



C. Varela 28 

World-Wide Computer (WWC) 

•  Distributed computing platform. 
•  Provides a run-time system for universal actors. 
•  Includes naming service implementations. 
•  Remote message sending protocol. 
•  Support for universal actor migration. 
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Abstractions for Worldwide 
Computing 

 
•  Universal Actors, a new abstraction provided to guarantee unique actor 

names across the Internet. 

•  Theaters, extended Java virtual machines to provide execution 
environment and network services to universal actors: 
–  Access to local resources. 
–  Remote message sending.   
–  Migration. 

•  Naming service, to register and locate universal actors, transparently 
updated upon universal actor creation, migration, garbage collection. 
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Universal Actor Names (UAN) 
•  Consists of human readable names. 
•  Provides location transparency to actors. 
•  Name to locator mapping updated as actors migrate. 
•  UAN servers provide mapping between names and 

locators. 
–  Example Universal Actor Name: 

          uan://wwc.cs.rpi.edu:3030/cvarela/calendar 

 Name server 
address and 

(optional) port. 

Unique 
relative 

actor name. 
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WWC Theaters 

Theater address 
and port. Actor location. 
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Universal Actor Locators (UAL) 

•  Theaters provide an execution environment for universal 
actors. 

•  Provide a layer beneath actors for message passing and 
migration. 

•  When an actor migrates, its UAN remains the same, while 
its UAL changes to refer to the new theater. 

•  Example Universal Actor Locator: 
                        rmsp://wwc.cs.rpi.edu:4040 

Theater’s IP 
address and 

(optional) port. 
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SALSA Language Support for Worldwide 
Computing 

•  SALSA provides linguistic abstractions for: 

–  Universal naming (UAN & UAL). 
–  Remote actor creation. 
–  Location-transparent message sending. 
–  Migration. 
–  Coordination. 

•  SALSA-compiled code closely tied to WWC run-time platform. 
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Universal Actor Creation 

•  To create an actor locally  
 

TravelAgent a = new TravelAgent(); 

•  To create an actor with a specified UAN and UAL: 

TravelAgent a = new TravelAgent() at (uan, ual); 

•  To create an actor with a specified UAN at current location: 
 

TravelAgent a = new TravelAgent() at (uan); 
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Message Sending 
 

 
TravelAgent a = new TravelAgent(); 

 

a <- book( flight ); 

Message sending syntax is 
the same (<-), 

independently of actor’s 
location.!
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Remote Message Sending 

•  Obtain a remote actor reference by name.  

TravelAgent a = (TravelAgent) 
TravelAgent.getReferenceByName(“uan://myhost/ta”); 

 

a <- printItinerary(); 
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Reference Cell Service Example 
module dcell; 
 
behavior Cell implements ActorService{ 
 

 Object content; 
  
 Cell(Object initialContent) {  

         content = initialContent;  
   } 

  
 Object get() {  
  standardOutput <- println (“Returning: ”+content); 
  return content; 
 } 
  
 void set(Object newContent) { 
  standardOutput <- println (“Setting: ”+newContent); 
  content = newContent; 
 } 

} 

implements ActorService 
signals that actors with this 

behavior are not to be 
garbage collected.!
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Reference Cell Tester 
module dcell; 
 
behavior CellTester { 
 

  void act( String[] args ) { 
       
      if (args.length != 2){ 

  standardError <- println( 
              “Usage: salsa dcell.CellTester <UAN> <UAL>”); 

  return; 
   } 

 
   Cell c = new Cell(0) at (args[0], args[1]); 

 
      standardOutput <- print( ”Initial Value:” ) @ 
      c <- get() @ standardOutput <- println( token ); 
    } 
} 
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Reference Cell Client Example 

module dcell; 
 
behavior GetCellValue { 
 

 void act( String[] args ) { 
      if (args.length != 1){ 

  standardOutput <- println( 
            “Usage: salsa dcell.GetCellValue <CellUAN>”); 

  return; 
    } 

 
    Cell c = (Cell) Cell.getReferenceByName(args[0]); 

 
    standardOutput <- print(“Cell Value:”) @ 
    c <- get() @ 
    standardOutput <- println(token); 

   } 
} 
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Address Book Service 

module addressbook; 
import java.util.* 
 
behavior AddressBook implements ActorService { 

 Hashtable name2email; 
 AddressBook() {  

         name2email = new HashTable();  
   }   

 String getName(String email) { … } 
 String getEmail(String name) { … } 
 boolean addUser(String name, String email) { … } 

 
 void act( String[] args ) { 

      if (args.length != 0){ 
  standardOutput<-println(“Usage: salsa -Duan=<UAN> -Dual=<UAL> 
           addressbook.AddressBook”); 
    } 

   } 
} 
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Address Book Add User 
Example 

 
module addressbook; 
 
behavior AddUser { 

 void act( String[] args ) { 
      if (args.length != 3){ 

  standardOutput<-println(“Usage: salsa 
    addressbook.AddUser <AddressBookUAN> <Name> <Email>”); 
  return; 
    } 
    AddressBook book = (AddressBook)  
  AddressBook.getReferenceByName(new UAN(args[0])); 
    book<-addUser(args(1), args(2)); 

   } 
} 
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Address Book Get Email 
Example 

module addressbook; 
 
behavior GetEmail { 

 void act( String[] args ) { 
      if (args.length != 2){ 

  standardOutput <- println(“Usage: salsa 
    addressbook.GetEmail <AddressBookUAN> <Name>”); 
  return; 
    } 
    getEmail(args(0),args(1)); 
 } 

 
 void getEmail(String uan, String name){ 
  try{ 
     AddressBook book = (AddressBook)  
   AddressBook.getReferenceByName(new UAN(uan)); 
        standardOutput <- print(name + “’s email: “) @ 
        book <- getEmail(name) @ 
        standardOutput <- println(token); 
  } catch(MalformedUANException e){ 
     standardError<-println(e); 
  } 
 } 

} 
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Erlang Language Support for Distributed 
Computing 

•  Erlang provides linguistic abstractions for: 

–  Registered processes (actors). 
–  Remote process (actor) creation. 
–  Remote message sending. 
–  Process (actor) groups. 
–  Error detection. 

•  Erlang-compiled code closely tied to Erlang node run-time platform. 
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Erlang Nodes 

•  To return our own node name: 
 

node() 
 

•  To return a list of other known node names: 

nodes() 
 

•  To monitor a node: 

monitor_node(Node, Flag) 
 

If flag is true, monitoring starts.  If 
false, monitoring stops. When a 

monitored node fails, {nodedown, 
Node} is sent to monitoring process.!
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Actor Creation 

•  To create an actor locally  
 

Agent = spawn(travel, agent, []); 

•  To create an actor in a specified remote node: 

Agent = spawn(host, travel, agent, []); 

travel is the module name, 
agent is the function name, 
Agent is the actor name.!

host is the node name.!
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Actor Registration 

•  To register an actor: 
 

register(ta, Agent) 
 

•  To return the actor identified with a registered name: 

whereis(ta) 
 

•  To remove the association between an atom and an actor: 

unregister(ta) 
 

ta is the registered name (an atom), 
Agent is the actor name (PID).!
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Message Sending 
 

 
Agent = spawn(travel, agent, []), 

register(ta, Agent) 
 

Agent ! {book, Flight} 
ta ! {book, Flight} 

 

Message sending syntax is 
the same (!) with actor 

name (Agent) or registered 
name (ta).!



C. Varela 48 

Remote Message Sending 

•  To send a message to a remote registered actor:  

{ta, host} ! {book, Flight} 
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Reference Cell Service Example 
-module(dcell). 
-export([cell/1,start/1]). 
 

cell(Content) ->  
  receive 
    {set, NewContent} -> cell(NewContent);  
    {get, Customer}   -> Customer ! Content,  
                         cell(Content) 
  end. 

 
start(Content) ->  
  register(dcell, spawn(dcell, cell, [Content])) 
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Reference Cell Tester 
-module(dcellTester). 
-export([main/0]). 
 

main() -> dcell:start(0), 
          dcell!{get, self()}, 
          receive 
             Value -> 
                io:format(”Initial Value:~w~n”,[Value]) 
          end. 
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Reference Cell Client Example 

-module(dcellClient). 
-export([getCellValue/1]). 
 

getCellValue(Node) -> 
          {dcell, Node}!{get, self()}, 
          receive 
             Value -> 
                io:format(”Initial Value:~w~n”,[Value]) 
          end. 
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Address Book Service 
-module(addressbook). 
-export([start/0,addressbook/1]). 
 
start() -> 
    register(addressbook, spawn(addressbook, addressbook, [[]])). 
 
addressbook(Data) ->  
  receive 
    {From, {addUser, Name, Email}} -> 
       From ! {addressbook, ok}, 
       addressbook(add(Name, Email, Data)); 
    {From, {getName, Email}} -> 
       From ! {addressbook, getname(Email, Data)}, 
       addressbook(Data); 
    {From, {getEmail, Name}} -> 
       From ! {addressbook, getemail(Name, Data)}, 
       addressbook(Data) 
  end. 
 
add(Name, Email, Data) -> … 
getname(Email, Data) -> … 
getemail(Name, Data) -> … 
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Address Book Client Example 
-module(addressbook_client). 
-export([getEmail/1,getName/1,addUser/2]). 
 
addressbook_server() -> 'addressbook@127.0.0.1'. 
 
getEmail(Name) -> call_addressbook({getEmail, Name}). 
getName(Email) -> call_addressbook({getName, Email}). 
addUser(Name, Email) -> call_addressbook({addUser, Name, Email}). 
 
call_addressbook(Msg) -> 
    AddressBookServer = addressbook_server(), 
    monitor_node(AddressBookServer, true), 
    {addressbook, AddressBookServer} ! {self(), Msg}, 
    receive 
       {addressbook, Reply} -> 
           monitor_node(AddressBookServer, false), 
           Reply; 
       {nodedown, AddressBookServer} -> 
           no 
    end. 
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Exercises 

51. How would you implement the join continuation 
linguistic abstraction considering different potential 
distributions of its participating actors? 

52. CTM Exercise 11.11.3 (page 746).  Implement the 
example using SALSA/WWC and Erlang. 

53. PDCS Exercise 9.6.3 (page 203). 
54. PDCS Exercise 9.6.9 (page 204). 
55. PDCS Exercise 9.6.12 (page 204). 
56. Write the same distributed programs in Erlang. 
 
 


