
C. Varela 1

Distributed systems abstractions
(PDCS 9, CPE 6*)

Carlos Varela

Rennselaer Polytechnic Institute

October 20, 2015

* Concurrent Programming in Erlang, by J. Armstrong, R. Virding, C. Wikström, M. Williams

C. Varela 2

Actor Languages Summary
•  Actors are concurrent entities that react to messages.

–  State is completely encapsulated. There is no shared memory!
–  Message passing is asynchronous.
–  Actors can create new actors. Run-time has to ensure fairness.

•  AMST extends the call by value lambda calculus with actor primitives.
State is modeled as function arguments. Actors use ready to receive
new messages.

•  SALSA extends an object-oriented programming language (Java) with
universal actors. State is explicit, encapsulated in instance variables.
Control loop is implicit: ending a message handler, signals readiness to
receive a new message. Actors are garbage-collected.

•  Erlang extends a functional programming language core with processes
that run arbitrary functions. State is implicit in the function’s
arguments. Control loop is explicit: actors use receive to get a
message, and tail-form recursive call to continue. Ending a function
denotes process (actor) termination.

Tree Product Behavior in AMST
Btreeprod =

 rec(λb.λm.
 seq(if(isnat(tree(m)),

 send(cust(m),tree(m)),

 let newcust=new(Bjoincont(cust(m))),

 lp = new(Btreeprod),

 rp = new(Btreeprod) in
 seq(send(lp,

 pr(left(tree(m)),newcust)),

 send(rp,

 pr(right(tree(m)),newcust)))),

 ready(b)))

C. Varela 3

Join Continuation in AMST

Bjoincont =

 λcust.λfirstnum.ready(λnum.

 seq(send(cust,firstnum*num),

 ready(sink)))

C. Varela 4

C. Varela 5

Tree Product Behavior in SALSA

module treeprod;

behavior TreeProduct {

 void compute(Tree t, UniversalActor c){
 if (t.isLeaf()) c <- result(t.value());
 else {
 JoinCont newCust = new JoinCont(c);
 TreeProduct lp = new TreeProduct();
 TreeProduct rp = new TreeProduct();
 lp <- compute(t.left(), newCust);
 rp <- compute(t.right(), newCust);
 }
 }

}

C. Varela 6

Join Continuation in SALSA

module treeprod;
behavior JoinCont {

 UniversalActor cust;
 int first;
 boolean receivedFirst;

 JoinCont(UniversalActor cust){
 this.cust = cust;
 this.receivedFirst = false;
 }

 void result(int v) {
 if (!receivedFirst){
 first = v; receivedFirst = true;
 }
 else // receiving second value
 cust <- result(first*v);
 }
}

Tree Product Behavior in Erlang
-module(treeprod).
-export([treeprod/0,join/1]).

treeprod() ->
 receive
 {{Left, Right}, Customer} ->
 NewCust = spawn(treeprod,join,[Customer]),
 LP = spawn(treeprod,treeprod,[]),
 RP = spawn(treeprod,treeprod,[]),

 LP!{Left,NewCust},
 RP!{Right,NewCust};
 {Number, Customer} ->
 Customer ! Number
 end,
 treeprod().

join(Customer) -> receive V1 -> receive V2 -> Customer ! V1*V2 end end.

C. Varela 7

C. Varela 8

Concurrency Control in SALSA

•  SALSA provides three main coordination constructs:
–  Token-passing continuations

•  To synchronize concurrent activities
•  To notify completion of message processing
•  Named tokens enable arbitrary synchronization (data-flow)

–  Join blocks
•  Used for barrier synchronization for multiple concurrent

activities
•  To obtain results from otherwise independent concurrent

processes
–  First-class continuations

•  To delegate producing a result to a third-party actor

C. Varela 9

Token Passing Continuations
•  @ syntax using token as an argument is syntactic sugar.

–  Example 1:
a1 <- m1() @
a2 <- m2(token);

is syntactic sugar for:
token t = a1 <- m1();
a2 <- m2(t);

–  Example 2:
a1 <- m1() @
a2 <- m2();

is syntactic sugar for:
token t = a1 <- m1();
a2 <- m2():waitfor(t);

C. Varela 10

Named Tokens
•  Tokens can be named to enable more loosely-

coupled synchronization

–  Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3(t1);
token t4 = a4 <- m4(t2);
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until
messages m1()..m4() have been
processed. m1() can proceed
concurrently with m2().

C. Varela 11

Join Blocks

•  Provide a mechanism for synchronizing the processing of a set of
messages.

•  Set of results is sent along as a token containing an array of results.
–  Example:

UniversalActor[] actors = { searcher0, searcher1,
 searcher2, searcher3 };

join {
 for (int i=0; i < actors.length; i++){
 actors[i] <- find(phrase);
 }
} @ resultActor <- output(token);

Send the find(phrase) message to each actor in actors[] then after all

have completed send the result to resultActor as the argument of an
output(…) message.

C. Varela 12

First Class Continuations

•  Enable actors to delegate computation to a third party independently of
the processing context.

•  For example:

 int m(…){
 b <- n(…) @ currentContinuation;

 }
Ask (delegate) actor b to respond to this message m on behalf of current actor

(self) by processing b’s message n.

C. Varela 13

Tree Product Behavior Revisited

module treeprod;

behavior JoinTreeProduct {

 int multiply(Object[] results){
 return (Integer) results[0] * (Integer) results[1];
 }

 int compute(Tree t){
 if (t.isLeaf()) return t.value();
 else {
 JoinTreeProduct lp = new JoinTreeProduct();
 JoinTreeProduct rp = new JoinTreeProduct();
 join {
 lp <- compute(t.left());
 rp <- compute(t.right());
 } @ multiply(token) @ currentContinuation;
 }
 }
}

Notice we use token-passing
continuations (@,token), a

join block (join), and a first-
class continuation

(currentContinuation).!

C. Varela 14

Concurrency control in Erlang

•  Erlang uses a selective receive mechanism to help
coordinate concurrent activities:
–  Message patterns and guards

•  To select the next message (from possibly many) to execute.
•  To receive messages from a specific process (actor).
•  To receive messages of a specific kind (pattern).

–  Timeouts
•  To enable default activities to fire in the absence of messages

(following certain patterns).
•  To create timers.

–  Zero timeouts (after 0)
•  To implement priority messages, to flush a mailbox.

Selective Receive
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
end

receive suspends until a message in the actor’s mailbox
matches any of the patterns including optional guards.

•  Patterns are tried in order. On a match, the message is
removed from the mailbox and the corresponding pattern’s
actions are executed.

•  When a message does not match any of the patterns, it is
left in the mailbox for future receive actions.

C. Varela 15

Selective Receive Example
Example program and mailbox (head at top):

receive

 msg_b -> …
end

receive tries to match msg_a and fails. msg_b can be
matched, so it is processed. Suppose execution continues:

receive

 msg_c -> …
 msg_a -> …
end
The next message to be processed is msg_a since it is the

next in the mailbox and it matches the 2nd pattern.

C. Varela 16

msg_a

msg_b

msg_c

msg_a

msg_c

Receiving from a specific actor

Actor ! {self(), message}

self() is a Built-In-Function (BIF) that returns the current
(executing) process id (actor name). Ids can be part of a
message.

receive

 {ActorName, Msg} when ActorName == A1 ->
 …
end

receive can then select only messages that come from a
specific actor, in this example, A1. (Or other actors that
know A1’s actor name.)

C. Varela 17

Receiving a specific kind of
message

counter(Val) ->
 receive

 increment -> counter(Val+1);
 {From,value} ->
 From ! {self(), Val},
 counter(Val);
 stop -> true;
 Other -> counter(Val)

 end.

counter is a behavior that can receive increment

messages, value request messages, and stop messages.
Other message kinds are ignored.

C. Varela 18

increment is an atom
whereas Other is a

variable (that matches
anything!). !

Order of message patterns matters

receive
 {{Left, Right}, Customer} ->

 NewCust = spawn(treeprod,join,[Customer]),
 LP = spawn(treeprod,treeprod,[]),
 RP = spawn(treeprod,treeprod,[]),
 LP!{Left,NewCust},
 RP!{Right,NewCust};
 {Number, Customer} ->

 Customer ! Number
end

In this example, a binary tree is represented as a tuple
{Left, Right}, or as a Number, e.g.,

 {{{5,6},2},{3,4}}

C. Varela 19

{Left,Right} is a
more specific pattern
than Number is (which
matches anything!).
Order of patterns is

important.!

Selective Receive with Timeout
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
 after TimeOutExpr ->
 ActionsT
end

TimeOutExpr evaluates to an integer interpreted as
milliseconds.

If no message has been selected within this time, the timeout
occurs and ActionsT are scheduled for evaluation.

A timeout of infinity means to wait indefinitely.

C. Varela 20

Timer Example

sleep(Time) ->
 receive

 after Time ->
 true
 end.

sleep(Time) suspends the current actor for Time
milliseconds.

C. Varela 21

Timeout Example
receive
 click ->
 receive

 click ->
 double_click
 after double_click_interval() ->
 single_click
 end
 ...

end

double_click_interval evaluates to the number of
milliseconds expected between two consecutive mouse
clicks, for the receive to return a double_click.
Otherwise, a single_click is returned.

C. Varela 22

Zero Timeout
receive
 MessagePattern1 [when Guard1] ->
 Actions1 ;

 MessagePattern2 [when Guard2] ->
 Actions2 ;
 …
 after 0 ->
 ActionsT
end

A timeout of 0 means that the timeout will occur
immediately, but Erlang tries all messages currently in the
mailbox first.

C. Varela 23

Zero Timeout Example

flush_buffer() ->
 receive

 AnyMessage ->
 flush_buffer()
 after 0 ->
 true
 end.

flush_buffer() completely empties the mailbox of the
current actor.

C. Varela 24

Priority Messages

priority_receive() ->
 receive

 interrupt ->
 interrupt
 after 0 ->
 receive
 AnyMessage ->
 AnyMessage

 end
 end.

priority_receive() will return the first message in
the actor’s mailbox, except if there is an interrupt
message, in which case, interrupt will be given
priority.

 C. Varela 25

C. Varela 26

Overview of
programming distributed systems

•  It is harder than concurrent programming!
•  Yet unavoidable in today’s information-oriented society, e.g.:

–  Internet, mobile devices
–  Web services
–  Cloud computing

•  Communicating processes with independent address spaces
•  Limited network performance

–  Orders of magnitude difference between WAN, LAN, and intra-machine
communication.

•  Localized heterogeneous resources, e.g, I/O, specialized devices.
•  Partial failures, e.g. hardware failures, network disconnection
•  Openness: creates security, naming, composability issues.

C. Varela 27

SALSA Revisited
•  SALSA

–  Simple Actor Language System and
Architecture

–  An actor-oriented language for mobile and
internet computing

–  Programming abstractions for internet-based
concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001 Intriguing Technology Track, 36(12), pp 20-34.

•  Advantages for distributed computing

–  Actors encapsulate state and concurrency:
•  Actors can run in different machines.
•  Actors can change location dynamically.

–  Communication is asynchronous:
•  Fits real world distributed systems.

–  Actors can fail independently.

C. Varela 28

World-Wide Computer (WWC)

•  Distributed computing platform.
•  Provides a run-time system for universal actors.
•  Includes naming service implementations.
•  Remote message sending protocol.
•  Support for universal actor migration.

C. Varela 29

Abstractions for Worldwide
Computing

•  Universal Actors, a new abstraction provided to guarantee unique actor

names across the Internet.

•  Theaters, extended Java virtual machines to provide execution
environment and network services to universal actors:
–  Access to local resources.
–  Remote message sending.
–  Migration.

•  Naming service, to register and locate universal actors, transparently
updated upon universal actor creation, migration, garbage collection.

C. Varela 30

Universal Actor Names (UAN)
•  Consists of human readable names.
•  Provides location transparency to actors.
•  Name to locator mapping updated as actors migrate.
•  UAN servers provide mapping between names and

locators.
–  Example Universal Actor Name:

 uan://wwc.cs.rpi.edu:3030/cvarela/calendar

 Name server
address and

(optional) port.

Unique
relative

actor name.

C. Varela 31

WWC Theaters

Theater address
and port. Actor location.

C. Varela 32

Universal Actor Locators (UAL)

•  Theaters provide an execution environment for universal
actors.

•  Provide a layer beneath actors for message passing and
migration.

•  When an actor migrates, its UAN remains the same, while
its UAL changes to refer to the new theater.

•  Example Universal Actor Locator:
 rmsp://wwc.cs.rpi.edu:4040

Theater’s IP
address and

(optional) port.

C. Varela 33

SALSA Language Support for Worldwide
Computing

•  SALSA provides linguistic abstractions for:

–  Universal naming (UAN & UAL).
–  Remote actor creation.
–  Location-transparent message sending.
–  Migration.
–  Coordination.

•  SALSA-compiled code closely tied to WWC run-time platform.

C. Varela 34

Universal Actor Creation

•  To create an actor locally

TravelAgent a = new TravelAgent();

•  To create an actor with a specified UAN and UAL:

TravelAgent a = new TravelAgent() at (uan, ual);

•  To create an actor with a specified UAN at current location:

TravelAgent a = new TravelAgent() at (uan);

C. Varela 35

Message Sending

TravelAgent a = new TravelAgent();

a <- book(flight);

Message sending syntax is
the same (<-),

independently of actor’s
location.!

C. Varela 36

Remote Message Sending

•  Obtain a remote actor reference by name.

TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName(“uan://myhost/ta”);

a <- printItinerary();

C. Varela 37

Reference Cell Service Example
module dcell;

behavior Cell implements ActorService{

 Object content;

 Cell(Object initialContent) {

 content = initialContent;
 }

 Object get() {
 standardOutput <- println (“Returning: ”+content);
 return content;
 }

 void set(Object newContent) {
 standardOutput <- println (“Setting: ”+newContent);
 content = newContent;
 }

}

implements ActorService
signals that actors with this

behavior are not to be
garbage collected.!

C. Varela 38

Reference Cell Tester
module dcell;

behavior CellTester {

 void act(String[] args) {

 if (args.length != 2){

 standardError <- println(
 “Usage: salsa dcell.CellTester <UAN> <UAL>”);

 return;
 }

 Cell c = new Cell(0) at (args[0], args[1]);

 standardOutput <- print(”Initial Value:”) @
 c <- get() @ standardOutput <- println(token);
 }
}

C. Varela 39

Reference Cell Client Example

module dcell;

behavior GetCellValue {

 void act(String[] args) {
 if (args.length != 1){

 standardOutput <- println(
 “Usage: salsa dcell.GetCellValue <CellUAN>”);

 return;
 }

 Cell c = (Cell) Cell.getReferenceByName(args[0]);

 standardOutput <- print(“Cell Value:”) @
 c <- get() @
 standardOutput <- println(token);

 }
}

C. Varela 40

Address Book Service

module addressbook;
import java.util.*

behavior AddressBook implements ActorService {

 Hashtable name2email;
 AddressBook() {

 name2email = new HashTable();
 }

 String getName(String email) { … }
 String getEmail(String name) { … }
 boolean addUser(String name, String email) { … }

 void act(String[] args) {

 if (args.length != 0){
 standardOutput<-println(“Usage: salsa -Duan=<UAN> -Dual=<UAL>
 addressbook.AddressBook”);
 }

 }
}

C. Varela 41

Address Book Add User
Example

module addressbook;

behavior AddUser {

 void act(String[] args) {
 if (args.length != 3){

 standardOutput<-println(“Usage: salsa
 addressbook.AddUser <AddressBookUAN> <Name> <Email>”);
 return;
 }
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(args[0]));
 book<-addUser(args(1), args(2));

 }
}

C. Varela 42

Address Book Get Email
Example

module addressbook;

behavior GetEmail {

 void act(String[] args) {
 if (args.length != 2){

 standardOutput <- println(“Usage: salsa
 addressbook.GetEmail <AddressBookUAN> <Name>”);
 return;
 }
 getEmail(args(0),args(1));
 }

 void getEmail(String uan, String name){
 try{
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(uan));
 standardOutput <- print(name + “’s email: “) @
 book <- getEmail(name) @
 standardOutput <- println(token);
 } catch(MalformedUANException e){
 standardError<-println(e);
 }
 }

}

C. Varela 43

Erlang Language Support for Distributed
Computing

•  Erlang provides linguistic abstractions for:

–  Registered processes (actors).
–  Remote process (actor) creation.
–  Remote message sending.
–  Process (actor) groups.
–  Error detection.

•  Erlang-compiled code closely tied to Erlang node run-time platform.

C. Varela 44

Erlang Nodes

•  To return our own node name:

node()

•  To return a list of other known node names:

nodes()

•  To monitor a node:

monitor_node(Node, Flag)

If flag is true, monitoring starts. If
false, monitoring stops. When a

monitored node fails, {nodedown,
Node} is sent to monitoring process.!

C. Varela 45

Actor Creation

•  To create an actor locally

Agent = spawn(travel, agent, []);

•  To create an actor in a specified remote node:

Agent = spawn(host, travel, agent, []);

travel is the module name,
agent is the function name,
Agent is the actor name.!

host is the node name.!

C. Varela 46

Actor Registration

•  To register an actor:

register(ta, Agent)

•  To return the actor identified with a registered name:

whereis(ta)

•  To remove the association between an atom and an actor:

unregister(ta)

ta is the registered name (an atom),
Agent is the actor name (PID).!

C. Varela 47

Message Sending

Agent = spawn(travel, agent, []),

register(ta, Agent)

Agent ! {book, Flight}
ta ! {book, Flight}

Message sending syntax is
the same (!) with actor

name (Agent) or registered
name (ta).!

C. Varela 48

Remote Message Sending

•  To send a message to a remote registered actor:

{ta, host} ! {book, Flight}

C. Varela 49

Reference Cell Service Example
-module(dcell).
-export([cell/1,start/1]).

cell(Content) ->
 receive
 {set, NewContent} -> cell(NewContent);
 {get, Customer} -> Customer ! Content,
 cell(Content)
 end.

start(Content) ->
 register(dcell, spawn(dcell, cell, [Content]))

C. Varela 50

Reference Cell Tester
-module(dcellTester).
-export([main/0]).

main() -> dcell:start(0),
 dcell!{get, self()},
 receive
 Value ->
 io:format(”Initial Value:~w~n”,[Value])
 end.

C. Varela 51

Reference Cell Client Example

-module(dcellClient).
-export([getCellValue/1]).

getCellValue(Node) ->
 {dcell, Node}!{get, self()},
 receive
 Value ->
 io:format(”Initial Value:~w~n”,[Value])
 end.

C. Varela 52

Address Book Service
-module(addressbook).
-export([start/0,addressbook/1]).

start() ->
 register(addressbook, spawn(addressbook, addressbook, [[]])).

addressbook(Data) ->
 receive
 {From, {addUser, Name, Email}} ->
 From ! {addressbook, ok},
 addressbook(add(Name, Email, Data));
 {From, {getName, Email}} ->
 From ! {addressbook, getname(Email, Data)},
 addressbook(Data);
 {From, {getEmail, Name}} ->
 From ! {addressbook, getemail(Name, Data)},
 addressbook(Data)
 end.

add(Name, Email, Data) -> …
getname(Email, Data) -> …
getemail(Name, Data) -> …

C. Varela 53

Address Book Client Example
-module(addressbook_client).
-export([getEmail/1,getName/1,addUser/2]).

addressbook_server() -> 'addressbook@127.0.0.1'.

getEmail(Name) -> call_addressbook({getEmail, Name}).
getName(Email) -> call_addressbook({getName, Email}).
addUser(Name, Email) -> call_addressbook({addUser, Name, Email}).

call_addressbook(Msg) ->
 AddressBookServer = addressbook_server(),
 monitor_node(AddressBookServer, true),
 {addressbook, AddressBookServer} ! {self(), Msg},
 receive
 {addressbook, Reply} ->
 monitor_node(AddressBookServer, false),
 Reply;
 {nodedown, AddressBookServer} ->
 no
 end.

C. Varela 54

Exercises

51. How would you implement the join continuation
linguistic abstraction considering different potential
distributions of its participating actors?

52. CTM Exercise 11.11.3 (page 746). Implement the
example using SALSA/WWC and Erlang.

53. PDCS Exercise 9.6.3 (page 203).
54. PDCS Exercise 9.6.9 (page 204).
55. PDCS Exercise 9.6.12 (page 204).
56. Write the same distributed programs in Erlang.

