
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Programming Techniques
 Accumulators (CTM 3.4.3)

Difference Lists (CTM 3.4.4)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

December 1, 2015

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Accumulators
•  Accumulator programming is a way to handle state in

declarative programs. It is a programming technique that
uses arguments to carry state, transform the state, and pass
it to the next procedure.

•  Assume that the state S consists of a number of
components to be transformed individually:
 S = (X,Y,Z,...)

•  For each predicate P, each state component is made into a
pair, the first component is the input state and the second
component is the output state after P has terminated

•  S is represented as
 (Xin, Xout, Yin, Yout, Zin, Zout,...)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

A Trivial Example in Prolog
increment(N0,N) :-

 N is N0 + 1.

square(N0,N) :-

 N is N0 * N0.

inc_square(N0,N) :-

 increment(N0,N1),
 square(N1,N).

increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

inc_square takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
increment) and passing it as input
to square. The pairs N0-N1 and
N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

A Trivial Example in Oz
proc {Increment N0 N}

 N = N0 + 1
end

proc {Square N0 N}

 N = N0 * N0
end

proc {IncSquare N0 N}

 N1 in
 {Increment N0 N1}
 {Square N1 N}

end

Increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

Square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

IncSquare takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
Increment) and passing it as input
to Square. The pairs N0-N1 and
N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Accumulators
•  Assume that the state S consists of a number of components to be

transformed individually:
 S = (X,Y,Z)

•  Assume P1 to Pn are procedures in Oz

 proc {P X0 X Y0 Y Z0 Z}
 :
 {P1 X0 X1 Y0 Y1 Z0 Z1}
 {P2 X1 X2 Y1 Y2 Z1 Z2}
 :
 {Pn Xn-1 X Yn-1 Y Zn-1 Z}

end
•  The procedural syntax is easier to use if there is more than one

accumulator

accumulator

The same
concept

applies to
predicates in

Prolog

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

MergeSort Example
•  Consider a variant of MergeSort with accumulator
•  proc {MergeSort1 N S0 S Xs}

–  N is an integer,
–  S0 is an input list to be sorted
–  S is the remainder of S0 after the first N elements are sorted
–  Xs is the sorted first N elements of S0

•  The pair (S0, S) is an accumulator
•  The definition is in a procedural syntax in Oz because it

has two outputs S and Xs

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Example (2)
fun {MergeSort Xs}
 Ys in
 {MergeSort1 {Length Xs} Xs _ Ys}
 Ys
end

proc {MergeSort1 N S0 S Xs}
 if N==0 then S = S0 Xs = nil
 elseif N ==1 then X in X|S = S0 Xs=[X]
 else %% N > 1

 local S1 Xs1 Xs2 NL NR in
 NL = N div 2
 NR = N - NL
 {MergeSort1 NL S0 S1 Xs1}
 {MergeSort1 NR S1 S Xs2}
 Xs = {Merge Xs1 Xs2}
 end
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

MergeSort Example in Prolog
mergesort(Xs,Ys) :-
 length(Xs,N),
 mergesort1(N,Xs,_,Ys).

mergesort1(0,S,S,[]) :- !.
mergesort1(1,[X|S],S,[X]) :- !.
mergesort1(N,S0,S,Xs) :-

 NL is N // 2,
 NR is N - NL,
 mergesort1(NL,S0,S1,Xs1),
 mergesort1(NR,S1,S,Xs2),
 merge(Xs1,Xs2,Xs).

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Multiple accumulators
•  Consider a stack machine for evaluating

arithmetic expressions
•  Example: (1+4)-3
•  The machine executes the following

instructions
 push(1)
push(4)
plus
push(3)
minus

 4
 1

 5 3
 5

 2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Multiple accumulators (2)
•  Example: (1+4)-3
•  The arithmetic expressions are represented as trees:

 minus(plus(1 4) 3)
•  Write a procedure that takes arithmetic expressions

represented as trees and output a list of stack machine
instructions and counts the number of instructions

 proc {ExprCode Expr Cin Cout Nin Nout}

•  Cin: initial list of instructions
•  Cout: final list of instructions
•  Nin: initial count
•  Nout: final count

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Multiple accumulators (3)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Multiple accumulators (4)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

proc {SeqCode Es C0 C N0 N}
 case Es
 of nil then C = C0 N = N0
 [] E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Shorter version (4)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}
 [] minus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

proc {SeqCode Es C0 C N0 N}
 case Es
 of nil then C = C0 N = N0
 [] E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Functional style (4)
fun {ExprCode Expr t(C0 N0) }
 case Expr
 of plus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)}
 [] minus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)}
 [] I andthen {IsInt I} then
 t(push(I)|C0 N0 + 1)
 end
end

fun {SeqCode Es T}
 case Es
 of nil then T
 [] E|Er then

 T1 = {ExprCode E T} in
 {SeqCode Er T1}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Difference lists in Oz
•  A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

•  X # X % Represent the empty list
•  nil # nil % idem
•  [a] # [a] % idem
•  (a|b|c|X) # X % Represents [a b c]
•  [a b c d] # [d] % idem
•  [a b c d|Y] # [d|Y] % idem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Difference lists in Prolog
•  A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

•  X , X % Represent the empty list
•  [] , [] % idem
•  [a] , [a] % idem
•  [a,b,c|X] , X % Represents [a,b,c]
•  [a,b,c,d] , [d] % idem
•  [a,b,c,d|Y] , [d|Y] % idem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Difference lists in Oz (2)
•  When the second list is unbound, an append operation with

another difference list takes constant time
•  fun {AppendD D1 D2}

 S1 # E1 = D1
 S2 # E2 = D2

in E1 = S2
 S1 # E2

end
•  local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end
•  Displays (1|2|3|4|5|Y)#Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Difference lists in Prolog (2)
•  When the second list is unbound, an append operation with another difference

list takes constant time

 append_dl(S1,E1, S2,E2, S1,E2) :- E1 = S2.

•  ?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E).

Displays
 X = [4, 5|_G193]
 Y = _G193
 S = [1, 2, 3, 4, 5|_G193]
 E = _G193 ;

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

A FIFO queue
with difference lists (1)

•  A FIFO queue is a sequence of elements with an insert and a delete operation.
–  Insert adds an element to the end and delete removes it from the beginning

•  Queues can be implemented with lists. If L represents the queue content, then
deleting X can remove the head of the list matching X|T but inserting X
requires traversing the list {Append L [X]} (insert element at the end).

–  Insert is inefficient: it takes time proportional to the number of queue elements
•  With difference lists we can implement a queue with constant-time insert and

delete operations
–  The queue content is represented as q(N S E), where N is the number of elements

and S#E is a difference list representing the elements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

A FIFO queue
with difference lists (2)

•  Inserting ‘b’:
–  In: q(1 a|T T)
–  Out: q(2 a|b|U U)

•  Deleting X:
–  In: q(2 a|b|U U)
–  Out: q(1 b|U U)

and X=a
•  Difference list allows

operations at both ends
•  N is needed to keep track

of the number of queue
elements

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}

 case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end
end

fun {Delete Q X}

 case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end
end

fun {EmptyQueue Q} case Q of q(N S E) then N==0 end end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Flatten

fun {Flatten Xs}
case Xs
 of nil then nil
 [] X|Xr andthen {IsLeaf X} then
 X|{Flatten Xr}
 [] X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
 end
end

Flatten takes a list of
elements and sub-lists
and returns a list with
only the elements, e.g.:

{Flatten [1 [2] [[3]]]} =
[1 2 3]

Let us replace lists by
difference lists and see
what happens.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Flatten with difference lists (1)

•  Flatten of nil is X#X
•  Flatten of a leaf X|Xr is (X|Y1)#Y

–  flatten of Xr is Y1#Y

•  Flatten of X|Xr is Y1#Y where
–  flatten of X is Y1#Y2
–  flatten of Xr is Y3#Y
–  equate Y2 and Y3

Here is what it looks like
as text

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Flatten with difference lists (2)
proc {FlattenD Xs Ds}
 case Xs
 of nil then Y in Ds = Y#Y
 [] X|Xr andthen {IsLeaf X} then Y1 Y in
 {FlattenD Xr Y1#Y2}
 Ds = (X|Y1)#Y
 [] X|Xr andthen {IsList X} then Y0 Y1 Y2 in

 Ds = Y0#Y2
 {FlattenD X Y0#Y1}

 {FlattenD Xr Y1#Y2}
 end
end
fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end

Here is the new
program. It is much
more efficient than the
first version.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

Reverse

•  Here is our recursive reverse:

•  Rewrite this with difference lists:
–  Reverse of nil is X#X
–  Reverse of X|Xs is Y1#Y, where

•  reverse of Xs is Y1#Y2, and
•  equate Y2 and X|Y

fun {Reverse Xs}
 case Xs
 of nil then nil
 [] X|Xr then {Append {Reverse Xr} [X]}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

Reverse with difference lists (1)

•  The naive version takes
time proportional to the
square of the input length

•  Using difference lists in the
naive version makes it
linear time

•  We use two arguments Y1
and Y instead of Y1#Y

•  With a minor change we
can make it iterative as
well

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

 case Xs
 of nil then Y1=Y
 [] X|Xr then Y2 in
 {ReverseD Xr Y1 Y2}
 Y2 = X|Y
 end

end
R in

 {ReverseD Xs R nil}
R

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Reverse with difference lists (2)

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

 case Xs
 of nil then Y1=Y
 [] X|Xr then
 {ReverseD Xr Y1 X|Y}
 end

end
R in

 {ReverseD Xs R nil}
R

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Difference lists: Summary

•  Difference lists are a way to represent lists in the declarative model
such that one append operation can be done in constant time
–  A function that builds a big list by concatenating together lots of little lists

can usually be written efficiently with difference lists
–  The function can be written naively, using difference lists and append, and

will be efficient when the append is expanded out
•  Difference lists are declarative, yet have some of the power of

destructive assignment
–  Because of the single-assignment property of dataflow variables

•  Difference lists originated from Prolog and are used to implement, e.g.,
definite clause grammar rules for natural language parsing.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Exercises

91. Rewrite the Oz multiple accumulators example in Prolog.
92. Rewrite the Oz FIFO queue with difference lists in

Prolog.
93. Draw the search trees for Prolog queries:

•  append([1,2],[3],L).

•  append(X,Y,[1,2,3]).
•  append_dl([1,2|X],X,[3|Y],Y,S,E).

94. CTM Exercise 3.10.11 (page 232)
95. CTM Exercise 3.10.14 (page 232)
96. CTM Exercise 3.10.15 (page 232)

