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Accumulators 
•  Accumulator programming is a way to handle state in 

declarative programs.  It is a programming technique that 
uses arguments to carry state, transform the state, and pass 
it to the next procedure. 

•  Assume that the state S consists of a number of 
components to be transformed individually: 
  S = (X,Y,Z,...) 

•  For each predicate P, each state component is made into a 
pair, the first component is the input state and the second 
component is the output state after P has terminated 

•  S is represented as 
 (Xin, Xout, Yin, Yout, Zin, Zout,...) 
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A Trivial Example in Prolog 
increment(N0,N) :-  

 N is N0 + 1. 
 
square(N0,N) :- 

 N is N0 * N0. 
 
inc_square(N0,N) :- 

 increment(N0,N1), 
 square(N1,N). 

 

increment takes N0 as the input 
and produces N as the output by 
adding 1 to N0. 
 
square takes N0 as the input and 
produces N as the output by 
multiplying N0 to itself. 
 
inc_square takes N0 as the input 
and produces N as the output by 
using an intermediate variable N1 to 
carry N0+1 (the output of 
increment) and passing it as input 
to square.  The pairs N0-N1 and 
N1-N are called accumulators. 
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A Trivial Example in Oz 
proc {Increment N0 N} 

 N = N0 + 1 
end 
 
proc {Square N0 N} 

 N = N0 * N0 
end 
 
proc {IncSquare N0 N} 

 N1 in 
 {Increment N0 N1} 
 {Square N1 N} 

end 
 

Increment takes N0 as the input 
and produces N as the output by 
adding 1 to N0. 
 
Square takes N0 as the input and 
produces N as the output by 
multiplying N0 to itself. 
 
IncSquare takes N0 as the input 
and produces N as the output by 
using an intermediate variable N1 to 
carry N0+1 (the output of 
Increment) and passing it as input 
to Square.  The pairs N0-N1 and 
N1-N are called accumulators. 
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Accumulators 
•  Assume that the state S consists of a number of components to be 

transformed individually: 
  S = (X,Y,Z) 

•  Assume P1 to Pn are procedures in Oz 

 proc {P X0 X Y0 Y Z0 Z} 
  : 
 {P1 X0 X1 Y0 Y1 Z0 Z1} 
 {P2 X1 X2 Y1 Y2 Z1 Z2} 
  : 
 {Pn Xn-1 X Yn-1 Y Zn-1 Z}  

end 
•  The procedural syntax is easier to use if there is more than one 

accumulator 

accumulator 

The same 
concept 

applies to 
predicates in 

Prolog
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MergeSort Example 
•  Consider a variant of MergeSort with accumulator 
•  proc {MergeSort1 N S0 S Xs} 

–  N is an integer,  
–  S0 is an input list to be sorted 
–  S is the remainder of S0 after the first N elements are sorted 
–  Xs is the sorted first N elements of S0 

•  The pair (S0, S) is an accumulator 
•  The definition is in a procedural syntax in Oz because it 

has two outputs S and Xs 
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Example (2) 
fun {MergeSort Xs}  
   Ys in 
   {MergeSort1 {Length Xs} Xs _ Ys} 
   Ys 
end 

proc {MergeSort1 N S0 S Xs} 
   if N==0 then S = S0 Xs = nil 
   elseif N ==1 then X in X|S = S0 Xs=[X] 
   else %% N > 1 

 local S1 Xs1 Xs2 NL NR in 
        NL = N div 2 
        NR = N - NL 
        {MergeSort1 NL S0 S1 Xs1} 
        {MergeSort1 NR S1 S Xs2} 
        Xs = {Merge Xs1 Xs2} 
     end 
   end 
end 
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MergeSort Example in Prolog 
mergesort(Xs,Ys) :-  
   length(Xs,N), 
   mergesort1(N,Xs,_,Ys). 

mergesort1(0,S,S,[]) :- !. 
mergesort1(1,[X|S],S,[X]) :- !. 
mergesort1(N,S0,S,Xs) :- 

  NL is N // 2, 
        NR is N - NL, 
        mergesort1(NL,S0,S1,Xs1), 
        mergesort1(NR,S1,S,Xs2), 
        merge(Xs1,Xs2,Xs). 
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Multiple accumulators 
•  Consider a stack machine for evaluating 

arithmetic expressions 
•  Example: (1+4)-3 
•  The machine executes the following 

instructions 
 push(1) 
push(4) 
plus 
push(3) 
minus  

 4  
 1  

 5   3  
 5  

 2  
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Multiple accumulators (2) 
•  Example: (1+4)-3 
•  The arithmetic expressions are represented as trees: 

 minus(plus(1 4) 3) 
•  Write a procedure that takes arithmetic expressions 

represented as trees and output a list of stack machine 
instructions and counts the number of instructions 

  proc {ExprCode Expr Cin Cout Nin Nout} 

•  Cin: initial list of instructions 
•  Cout: final list of instructions 
•  Nin: initial count 
•  Nout: final count 
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Multiple accumulators (3) 
proc {ExprCode Expr C0 C N0 N} 
   case Expr 
   of plus(Expr1 Expr2) then C1 N1 in 
      C1 = plus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] minus(Expr1 Expr2) then C1 N1 in 
      C1 = minus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] I andthen {IsInt I} then 
      C = push(I)|C0 
      N = N0 + 1 
   end 
end 
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Multiple accumulators (4) 
proc {ExprCode Expr C0 C N0 N} 
   case Expr 
   of plus(Expr1 Expr2) then C1 N1 in 
      C1 = plus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] minus(Expr1 Expr2) then C1 N1 in 
      C1 = minus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] I andthen {IsInt I} then 
      C = push(I)|C0 
      N = N0 + 1 
   end 
end 

proc {SeqCode Es C0 C N0 N} 
   case Es 
   of nil then C = C0 N = N0 
   [] E|Er then N1 C1 in 
      {ExprCode E C0 C1 N0 N1} 
      {SeqCode Er C1 C N1 N} 
   end 
end 
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Shorter version (4) 
proc {ExprCode Expr C0 C N0 N} 
   case Expr 
   of plus(Expr1 Expr2) then 
      {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N} 
   [] minus(Expr1 Expr2) then 
  {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N} 
   [] I andthen {IsInt I} then 
      C = push(I)|C0 
      N = N0 + 1 
   end 
end 

proc {SeqCode Es C0 C N0 N} 
   case Es 
   of nil then C = C0 N = N0 
   [] E|Er then N1 C1 in 
      {ExprCode E C0 C1 N0 N1} 
      {SeqCode Er C1 C N1 N} 
   end 
end 
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Functional style (4) 
fun {ExprCode Expr t(C0 N0) } 
   case Expr 
   of plus(Expr1 Expr2) then 
      {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)} 
   [] minus(Expr1 Expr2) then 
  {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)} 
   [] I andthen {IsInt I} then 
      t(push(I)|C0 N0 + 1) 
   end 
end 

fun {SeqCode Es T} 
   case Es 
   of nil then T 
   [] E|Er then  

 T1 = {ExprCode E T} in 
      {SeqCode Er T1} 
   end 
end 
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Difference lists in Oz 
•  A difference list is a pair of lists, each might have an 

unbound tail, with the invariant that one can get the second 
list by removing zero or more elements from the first list 

•  X # X   % Represent the empty list 
•  nil # nil   % idem 
•  [a] # [a]   % idem 
•  (a|b|c|X) # X  % Represents [a b c] 
•  [a b c d] # [d]  % idem 
•  [a b c d|Y] # [d|Y]  % idem 
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Difference lists in Prolog 
•  A difference list is a pair of lists, each might have an 

unbound tail, with the invariant that one can get the second 
list by removing zero or more elements from the first list 

•  X , X   % Represent the empty list 
•  [] , []   % idem 
•  [a] , [a]   % idem 
•  [a,b,c|X] , X  % Represents [a,b,c] 
•  [a,b,c,d] , [d]  % idem 
•  [a,b,c,d|Y] , [d|Y]  % idem 
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Difference lists in Oz (2) 
•  When the second list is unbound, an append operation with 

another difference list takes constant time 
•  fun {AppendD D1 D2} 

 S1 # E1 = D1 
 S2 # E2 = D2 

in  E1 = S2 
 S1 # E2 

end 
•  local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end 
•  Displays (1|2|3|4|5|Y)#Y 
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Difference lists in Prolog (2) 
•  When the second list is unbound, an append operation with another difference 

list takes constant time 
 

  append_dl(S1,E1, S2,E2, S1,E2)  :-  E1 = S2. 

•  ?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E). 

Displays  
 X = [4, 5|_G193] 
 Y = _G193 
 S = [1, 2, 3, 4, 5|_G193] 
 E = _G193 ; 
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A FIFO queue 
with difference lists (1) 

•  A FIFO queue is a sequence of elements with an insert and a delete operation. 
–  Insert adds an element to the end and delete removes it from the beginning 

•  Queues can be implemented with lists.  If L represents the queue content, then 
deleting X can remove the head of the list matching X|T but inserting X 
requires traversing the list {Append L [X]} (insert element at the end). 

–  Insert is inefficient: it takes time proportional to the number of queue elements 
•  With difference lists we can implement a queue with constant-time insert and 

delete operations 
–  The queue content is represented as q(N S E), where N is the number of elements 

and S#E is a difference list representing the elements 
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A FIFO queue 
with difference lists (2) 

•  Inserting ‘b’: 
–  In: q(1 a|T T) 
–  Out: q(2 a|b|U U) 

•  Deleting X: 
–  In: q(2 a|b|U U) 
–  Out: q(1 b|U U)  

and X=a 
•  Difference list allows 

operations at both ends 
•  N is needed to keep track 

of the number of queue 
elements  

fun {NewQueue} X in q(0 X X) end 
 
fun {Insert Q X} 

 case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end  
end 
 
fun {Delete Q X} 

 case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end 
end 
 
fun {EmptyQueue Q} case Q of q(N S E) then N==0 end end 
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Flatten 

fun {Flatten Xs} 
case Xs 
   of nil then nil 
   [] X|Xr andthen {IsLeaf X} then 
     X|{Flatten Xr} 
   [] X|Xr  andthen {Not {IsLeaf X}} then 
      {Append {Flatten X} {Flatten Xr}} 
   end 
end 

Flatten takes a list of 
elements and sub-lists 
and returns a list with 
only the elements, e.g.: 
 
{Flatten [1 [2] [[3]]]} = 
[1 2 3] 
 
Let us replace lists by 
difference lists and see 
what happens. 
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Flatten with difference lists (1) 

•  Flatten of nil is X#X 
•  Flatten of a leaf X|Xr is (X|Y1)#Y 

–  flatten of Xr is Y1#Y 

•  Flatten of X|Xr is Y1#Y where 
–  flatten of X is Y1#Y2 
–  flatten of Xr is Y3#Y 
–  equate Y2 and Y3 
 

Here is what it looks like 
as text 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23 

Flatten with difference lists (2) 
proc {FlattenD Xs Ds} 
   case Xs 
   of nil then Y in Ds = Y#Y 
     [] X|Xr andthen {IsLeaf X} then Y1 Y in  
        {FlattenD Xr Y1#Y2} 
        Ds = (X|Y1)#Y    
     [] X|Xr  andthen {IsList X} then Y0 Y1 Y2 in 

  Ds = Y0#Y2 
        {FlattenD X Y0#Y1}  

  {FlattenD Xr Y1#Y2} 
   end 
end 
fun {Flatten Xs}  Y in {FlattenD Xs Y#nil}  Y end 

Here is the new 
program.  It is much 
more efficient than the 
first version. 
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Reverse 

•  Here is our recursive reverse: 
 
 
 
 
 

•  Rewrite this with difference lists: 
–  Reverse of nil is X#X 
–  Reverse of X|Xs is Y1#Y, where 

•  reverse of Xs is Y1#Y2, and 
•  equate Y2 and X|Y 

fun {Reverse Xs} 
 case Xs 
 of nil then nil 
 [] X|Xr then {Append {Reverse Xr} [X]} 
 end 

end 
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Reverse with difference lists (1) 

•  The naive version takes 
time proportional to the 
square of the input length 

•  Using difference lists in the 
naive version makes it 
linear time 

•  We use two arguments Y1 
and Y instead of Y1#Y 

•  With a minor change we 
can make it iterative as 
well 

fun {ReverseD Xs} 
proc {ReverseD Xs Y1 Y} 

 case Xs 
 of nil then Y1=Y 
 []  X|Xr then Y2 in       
        {ReverseD Xr Y1 Y2} 
       Y2 = X|Y 
 end 

end 
R in 

 {ReverseD Xs R nil} 
R 

end 
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Reverse with difference lists (2) 

fun {ReverseD Xs} 
proc {ReverseD Xs Y1 Y} 

 case Xs 
 of nil then Y1=Y 
 []  X|Xr then  
      {ReverseD Xr Y1 X|Y} 
 end 

end 
R in 

 {ReverseD Xs R nil} 
R 

end 
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Difference lists:  Summary 

•  Difference lists are a way to represent lists in the declarative model 
such that one append operation can be done in constant time 
–  A function that builds a big list by concatenating together lots of little lists 

can usually be written efficiently with difference lists 
–  The function can be written naively, using difference lists and append, and 

will be efficient when the append is expanded out 
•  Difference lists are declarative, yet have some of the power of 

destructive assignment 
–  Because of the single-assignment property of dataflow variables 

•  Difference lists originated from Prolog and are used to implement, e.g., 
definite clause grammar rules for natural language parsing. 
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Exercises 

91. Rewrite the Oz multiple accumulators example in Prolog. 
92. Rewrite the Oz FIFO queue with difference lists in 

Prolog. 
93. Draw the search trees for Prolog queries: 

•  append([1,2],[3],L). 

•  append(X,Y,[1,2,3]). 
•  append_dl([1,2|X],X,[3|Y],Y,S,E). 

94. CTM Exercise 3.10.11 (page 232) 
95. CTM Exercise 3.10.14 (page 232) 
96. CTM Exercise 3.10.15 (page 232) 


