
C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 1

Lazy Evaluation:
Infinite data structures, set comprehensions (CTM Section 4.5)

Carlos Varela
RPI

September 22, 2015

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted from S. Haridi and P. Van Roy 2

Lazy evaluation
•  The functions written so far are evaluated eagerly (as soon

as they are called)
•  Another way is lazy evaluation where a computation is

done only when the results is needed

declare
fun lazy {Ints N}
 N|{Ints N+1}
end

•  Calculates the infinite list:
0 | 1 | 2 | 3 | ...

C. Varela; Adapted from S. Haridi and P. Van Roy 3

Sqrt using an infinite list
let sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)
 where
 goodEnough guess = (abs (x – guess*guess))/x < 0.00001
 improve guess = (guess + x/guess)/2.0
 sqrtGuesses = 1:(map improve sqrtGuesses)

Infinite lists (sqrtGuesses) are enabled by lazy
evaluation.

C. Varela 4

Map in Haskell
map' :: (a -> b) -> [a] -> [b]
map' _ [] = []
map' f (h:t) = f h:map' f t

Functions in Haskell are lazy by default. That is, they can act on
infinite data structures by delaying evaluation until needed.

C. Varela; Adapted from S. Haridi and P. Van Roy 5

Lazy evaluation (2)
•  Write a function that computes as

many rows of Pascal’s triangle as
needed

•  We do not know how many
beforehand

•  A function is lazy if it is evaluated
only when its result is needed

•  The function PascalList is evaluated
when needed

fun lazy {PascalList Row}
 Row | {PascalList
 {AddList

 {ShiftLeft Row}
 {ShiftRight Row}}}

end

C. Varela; Adapted from S. Haridi and P. Van Roy

6

Lazy evaluation (3)
•  Lazy evaluation will avoid

redoing work if you decide first
you need the 10th row and later
the 11th row

•  The function continues where it
left off

declare
L = {PascalList [1]}
{Browse L}
{Browse L.1}
{Browse L.2.1}

L<Future>
[1]
[1 1]

C. Varela; Adapted from S. Haridi and P. Van Roy 7

Lazy execution
•  Without lazyness, the execution order of each thread

follows textual order, i.e., when a statement comes as the
first in a sequence it will execute, whether or not its results
are needed later

•  This execution scheme is called eager execution, or
supply-driven execution

•  Another execution order is that a statement is executed
only if its results are needed somewhere in the program

•  This scheme is called lazy evaluation, or demand-driven
evaluation (some languages use lazy evaluation by default,
e.g., Haskell)

C. Varela; Adapted from S. Haridi and P. Van Roy 8

Example
 B = {F1 X}
 C = {F2 Y}
 D = {F3 Z}
 A = B+C

•  Assume F1, F2 and F3 are lazy functions
•  B = {F1 X} and C = {F2 Y} are executed only if and when

their results are needed in A = B+C
•  D = {F3 Z} is not executed since it is not needed

C. Varela; Adapted from S. Haridi and P. Van Roy 9

Example

•  In lazy execution, an
operation suspends until its
result is needed

•  The suspended operation is
triggered when another
operation needs the value
for its arguments

•  In general multiple
suspended operations could
start concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Demand

C. Varela; Adapted from S. Haridi and P. Van Roy 10

Example II

•  In data-driven execution,
an operation suspends until
the values of its arguments
results are available

•  In general the suspended
computation could start
concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Data driven

C. Varela; Adapted from S. Haridi and P. Van Roy 11

Using Lazy Streams
fun {Sum Xs A Limit}
 if Limit>0 then
 case Xs of X|Xr then

 {Sum Xr A+X Limit-1}
 end
 else A end
end

local Xs S in
 Xs={Ints 0}
 S={Sum Xs 0 1500}
 {Browse S}
end

C. Varela; Adapted from S. Haridi and P. Van Roy 12

How does it work?
 fun {Sum Xs A Limit}
 if Limit>0 then
 case Xs of X|Xr then

 {Sum Xr A+X Limit-1}
 end
 else A end
end

fun lazy {Ints N}
 N | {Ints N+1}
end

local Xs S in
 Xs = {Ints 0}
 S={Sum Xs 0 1500}
 {Browse S}
end

C. Varela; Adapted from S. Haridi and P. Van Roy 13

Improving throughput
•  Use a lazy buffer
•  It takes a lazy input stream In and an integer N, and

returns a lazy output stream Out
•  When it is first called, it first fills itself with N elements by

asking the producer
•  The buffer now has N elements filled
•  Whenever the consumer asks for an element, the buffer in

turn asks the producer for another element

C. Varela; Adapted from S. Haridi and P. Van Roy 14

The buffer example

producer buffer consumer

N

producer buffer consumer

N

C. Varela; Adapted from S. Haridi and P. Van Roy 15

The buffer
fun {Buffer1 In N}
 End={List.drop In N}

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

 Traversing the In stream,
forces the producer to emit N
elements

C. Varela; Adapted from S. Haridi and P. Van Roy 16

The buffer II
fun {Buffer2 In N}
 End = thread

 {List.drop In N}
 end

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

 Traversing the In stream, forces
the producer to emit N
elements and at the same time
serves the consumer

C. Varela; Adapted from S. Haridi and P. Van Roy 17

The buffer III
fun {Buffer3 In N}
 End = thread

 {List.drop In N}
 end

 fun lazy {Loop In End}
 E2 = thread End.2 end

 In.1|{Loop In.2 E2}
 end
in
 {Loop In End}
end

Traverse the In stream, forces
the producer to emit N elements
and at the same time serves the
consumer, and requests the next
element ahead

C. Varela; Adapted from S. Haridi and P. Van Roy 18

Larger Example:
The Sieve of Eratosthenes

•  Produces prime numbers
•  It takes a stream 2...N, peals off 2 from the rest of the stream
•  Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys Zs

X|Zs

C. Varela; Adapted from S. Haridi and P. Van Roy 19

Lazy Sieve
fun lazy {Sieve Xs}
 X|Xr = Xs in
 X | {Sieve {LFilter

 Xr
 fun {$ Y} Y mod X \= 0 end
 }}

end

fun {Primes} {Sieve {Ints 2}} end

C. Varela; Adapted from S. Haridi and P. Van Roy 20

Lazy Filter
For the Sieve program we need a lazy filter

fun lazy {LFilter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
 end
end

C. Varela 21

Primes in Haskell
ints :: (Num a) => a -> [a]
ints n = n : ints (n+1)

sieve :: (Integral a) => [a] -> [a]
sieve (x:xr) = x:sieve (filter (\y -> (y `mod` x /= 0)) xr)

primes :: (Integral a) => [a]
primes = sieve (ints 2)

Functions in Haskell are lazy by default. You can use take 20
primes to get the first 20 elements of the list.

C. Varela; Adapted from S. Haridi and P. Van Roy 22

Define streams implicitly

•  Ones = 1 | Ones
•  Infinite stream of ones

1

cons

Ones

C. Varela; Adapted from S. Haridi and P. Van Roy 23

Define streams implicitly

•  Xs = 1 | {LMap Xs
 fun {$ X} X+1 end}

•  What is Xs ?

1

cons

+1

Xs?

C. Varela; Adapted from S. Haridi and P. Van Roy 24

The Hamming problem
•  Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

C. Varela; Adapted from S. Haridi and P. Van Roy 25

The Hamming problem
•  Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge

C. Varela; Adapted from S. Haridi and P. Van Roy 26

The Hamming problem
•  Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge

1

cons

H

C. Varela; Adapted from S. Haridi and P. Van Roy 27

Lazy File Reading
fun {ToList FO}

fun lazy {LRead} L T in
 if {File.readBlock FO L T} then
 T = {LRead}
 else T = nil {File.close FO} end
 L

end
{LRead}

end
•  This avoids reading the whole file in memory

C. Varela; Adapted from S. Haridi and P. Van Roy 28

List Comprehensions
•  Abstraction provided in lazy functional languages that

allows writing higher level set-like expressions
•  In our context we produce lazy lists instead of sets
•  The mathematical set expression

–  {x*y | 1≤x ≤10, 1≤y ≤x}
•  Equivalent List comprehension expression is

–  [X*Y | X = 1..10 ; Y = 1..X]

•  Example:
–  [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10]

C. Varela; Adapted from S. Haridi and P. Van Roy 29

List Comprehensions
•  The general form is
•  [f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...)

 y ← gen(x, a1,...,an) ; guard(y,x,...)

]
•  No linguistic support in Mozart/Oz, but can be easily

expressed

C. Varela; Adapted from S. Haridi and P. Van Roy 30

Example 1
•  z = [x#x | x ← from(1,10)]
•  Z = {LMap {LFrom 1 10} fun{$ X} X#X end}

•  z = [x#y | x ← from(1,10), y ← from(1,x)]
•  Z = {LFlatten

 {LMap {LFrom 1 10}
 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }

 }

C. Varela; Adapted from S. Haridi and P. Van Roy 31

Example 2
•  z = [x#y | x ← from(1,10), y ← from(1,x), x+y≤10]
•  Z ={LFilter

 {LFlatten
 {LMap {LFrom 1 10}

 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }

 }
 fun {$ X#Y} X+Y=<10 end} }

C. Varela 32

List Comprehensions in Haskell

lc1 = [(x,y) | x <- [1..10], y <- [1..x]]

lc2 = filter (\(x,y)->(x+y<=10)) lc1

lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10]

 Haskell provides syntactic support for list comprehensions.
List comprehensions are implemented using a built-in list
monad.

C. Varela 33

Quicksort using list
comprehensions

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (h:t) = quicksort [x | x <- t, x < h] ++
 [h] ++
 quicksort [x | x <-t, x >= h]

C. Varela; Adapted from S. Haridi and P. Van Roy 34

Higher-order programming
•  Higher-order programming = the set of programming

techniques that are possible with procedure values
(lexically-scoped closures)

•  Basic operations
–  Procedural abstraction: creating procedure values with lexical

scoping
–  Genericity: procedure values as arguments
–  Instantiation: procedure values as return values
–  Embedding: procedure values in data structures

•  Higher-order programming is the foundation of
component-based programming and object-oriented
programming

C. Varela; Adapted from S. Haridi and P. Van Roy 35

Embedding
•  Embedding is when procedure values are put in data

structures
•  Embedding has many uses:

–  Modules: a module is a record that groups together a set of related
operations

–  Software components: a software component is a generic function
that takes a set of modules as its arguments and returns a new
module. It can be seen as specifying a module in terms of the
modules it needs.

–  Delayed evaluation (also called explicit lazy evaluation): build just
a small part of a data structure, with functions at the extremities
that can be called to build more. The consumer can control
explicitly how much of the data structure is built.

C. Varela; Adapted from S. Haridi and P. Van Roy 36

Explicit lazy evaluation
•  Supply-driven evaluation. (e.g.The list is completely

calculated independent of whether the elements are needed
or not.)

•  Demand-driven execution.(e.g. The consumer of the list
structure asks for new list elements when they are needed.)

•  Technique: a programmed trigger.
•  How to do it with higher-order programming? The

consumer has a function that it calls when it needs a new
list element. The function call returns a pair: the list
element and a new function. The new function is the new
trigger: calling it returns the next data item and another
new function. And so forth.

C. Varela; Adapted from S. Haridi and P. Van Roy 37

Explicit lazy functions
fun lazy {From N}

N | {From N+1}
end

fun {From N}
 fun {$} N | {From N+1} end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 38

Implementation of lazy execution

〈s〉 ::= skip empty statement
 | ...

 | thread 〈s1〉 end thread creation
 | {ByNeed fun{$} 〈e〉 end 〈x〉} by need statement

The following defines the syntax of a statement, 〈s〉 denotes a statement

zero arity
function

variable

C. Varela; Adapted from S. Haridi and P. Van Roy 39

Implementation

 some statement

f
x

{ByNeed fun{$} 〈e〉 end X,E }
stack

store

A function value is created in
the
store (say f)
the function f is associated
with
the variable x
execution proceeds
immediately to next statement

f

C. Varela; Adapted from S. Haridi and P. Van Roy 40

Implementation

 some statement

f
x : f

{ByNeed fun{$} 〈e〉 end X,E }
stack

store

A function value is created in
the
store (say f)
the function f is associated
with
the variable x
execution proceeds
immediately to next statement

f

(fun{$} 〈e〉 end X,E)

C. Varela; Adapted from S. Haridi and P. Van Roy 41

Accessing the ByNeed variable
•  X = {ByNeed fun{$} 111*111 end} (by thread T0)

•  Access by some thread T1
–  if X > 1000 then {Browse hello#X} end

 or

–  {Wait X}
–  Causes X to be bound to 12321 (i.e. 111*111)

C. Varela; Adapted from S. Haridi and P. Van Roy 42

Implementation
Thread T1

1.  X is needed
2.  start a thread T2 to execute F (the function)
3.  only T2 is allowed to bind X

Thread T2

1.  Evaluate Y = {F}
2.  Bind X the value Y
3.  Terminate T2

4.  Allow access on X

C. Varela; Adapted from S. Haridi and P. Van Roy 43

Lazy functions
fun lazy {Ints N}

N | {Ints N+1}
end

fun {Ints N}
 fun {F} N | {Ints N+1} end

in {ByNeed F}
end

C. Varela 44

Exercises

26.  Write a lazy append list operation LazyAppend. Can you also write

LazyFoldL? Why or why not?
27.  CTM Exercise 4.11.10 (pg 341)
28.  CTM Exercise 4.11.13 (pg 342)
29.  CTM Exercise 4.11.17 (pg 342)
30.  Solve exercise 29 (Hamming problem) in Haskell.

