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Lazy evaluation 
•  The functions written so far are evaluated eagerly (as soon 

as they are called) 
•  Another way is lazy evaluation where a computation is 

done only when the results is needed 

declare 
fun lazy {Ints N} 
   N|{Ints N+1} 
end 

•  Calculates the infinite list: 
0 | 1 | 2 | 3 | ... 

 



C. Varela; Adapted from S. Haridi and P. Van Roy 3 

Sqrt using an infinite list 
let sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses) 
         where 
              goodEnough guess = (abs (x – guess*guess))/x < 0.00001 
              improve guess = (guess + x/guess)/2.0 
              sqrtGuesses = 1:(map improve sqrtGuesses) 

Infinite lists (sqrtGuesses) are enabled by lazy 
evaluation. 
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Map in Haskell 
map' :: (a -> b) -> [a] -> [b] 
map' _ []    = [] 
map' f (h:t) = f h:map' f t 

Functions in Haskell are lazy by default.  That is, they can act on 
infinite data structures by delaying evaluation until needed. 
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Lazy evaluation (2) 
•  Write a function that computes as 

many rows of Pascal’s triangle as 
needed 

•  We do not know how many 
beforehand 

•  A function is lazy if it is evaluated 
only when its result is needed 

•  The function PascalList is evaluated 
when needed 

fun lazy {PascalList Row} 
   Row | {PascalList  
                {AddList  

      {ShiftLeft Row} 
      {ShiftRight Row}}} 

end 
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Lazy evaluation (3) 
•  Lazy evaluation will avoid 

redoing work if you decide first 
you need the 10th row and later 
the 11th row 

•  The function continues where it 
left off 

declare 
L = {PascalList [1]} 
{Browse L} 
{Browse L.1} 
{Browse L.2.1} 

L<Future> 
[1] 
[1 1] 
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Lazy execution 
•  Without lazyness, the execution order of each thread 

follows textual order, i.e., when a statement comes as the 
first in a sequence it will execute, whether or not its results 
are needed later 

•  This execution scheme is called eager execution, or 
supply-driven execution  

•  Another execution order is that a statement is executed 
only if its results are needed somewhere in the program 

•  This scheme is called lazy evaluation, or demand-driven 
evaluation (some languages use lazy evaluation by default, 
e.g., Haskell) 
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Example 
 B = {F1 X} 
 C = {F2 Y} 
 D = {F3 Z} 
 A = B+C 

•  Assume F1, F2 and F3 are lazy functions  
•  B = {F1 X} and C = {F2 Y} are executed only if and when 

their results are needed in A = B+C 
•  D = {F3 Z} is not executed since it is not needed 
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Example 

•  In lazy execution, an 
operation suspends until its 
result is needed 

•  The suspended operation is 
triggered when another 
operation needs the value  
for its arguments 

•  In general multiple 
suspended operations could 
start concurrently  

B = {F1 X} C = {F2 Y} 

A = B+C 

Demand 
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Example II 

•  In data-driven execution, 
an operation suspends until 
the values of its arguments 
results are available 

•  In general the suspended 
computation could start  
concurrently  

B = {F1 X} C = {F2 Y} 

A = B+C 

Data driven 
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Using Lazy Streams 
fun {Sum Xs A Limit}  
    if Limit>0 then  
         case Xs of X|Xr then  

      {Sum Xr A+X Limit-1}  
         end  
   else A end  
end  

local Xs S in 
   Xs={Ints 0} 
   S={Sum Xs 0 1500} 
   {Browse S} 
end 
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How does it work? 
 fun {Sum Xs A Limit}  
    if Limit>0 then  
         case Xs of X|Xr then  

      {Sum Xr A+X Limit-1}  
         end  
   else A end  
end  

fun lazy {Ints N}  
   N | {Ints N+1}  
end  
 
local Xs S in 
   Xs = {Ints 0} 
   S={Sum Xs 0 1500} 
   {Browse S} 
end 
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Improving throughput 
•  Use a lazy buffer 
•  It takes  a lazy input stream In and an integer N, and 

returns a lazy output stream Out 
•  When it is first called, it first fills itself with N elements by 

asking the producer 
•  The buffer now has N elements filled 
•  Whenever the consumer asks for an element, the buffer in 

turn asks the producer for another element 
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The buffer example 

producer buffer consumer 

N 

producer buffer consumer 

N 
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The buffer 
fun {Buffer1 In N}  
    End={List.drop In N}  
 
    fun lazy {Loop In End}  
         In.1|{Loop In.2 End.2}  
    end  
in  
   {Loop In End}  
end  

 
 Traversing the In stream, 
forces the producer to emit N 
elements 
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The buffer II 
fun {Buffer2 In N}  
    End = thread  

             {List.drop In N} 
           end 

    fun lazy {Loop In End}  
         In.1|{Loop In.2 End.2}  
    end  
in  
   {Loop In End}  
end  

 
 Traversing the In stream, forces 
the producer to emit N 
elements and at the same time 
serves the consumer 
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The buffer III 
fun {Buffer3 In N}  
    End = thread  

             {List.drop In N} 
           end 

    fun lazy {Loop In End} 
    E2 = thread End.2 end  

         In.1|{Loop In.2 E2}  
    end  
in  
   {Loop In End}  
end  

 
Traverse the In stream, forces 
the producer to emit N elements 
and at the same time serves the 
consumer, and requests the next 
element ahead 
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Larger Example: 
The Sieve of Eratosthenes 

•  Produces prime numbers 
•  It takes a stream 2...N, peals off 2 from the rest of the stream 
•  Delivers the rest to the next sieve  

Sieve 

Filter Sieve 

Xs 

Xr 

X 

Ys Zs 

X|Zs 
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Lazy Sieve 
fun lazy {Sieve Xs} 
   X|Xr = Xs in 
   X | {Sieve {LFilter 

        Xr 
        fun {$ Y} Y mod X \= 0 end 
       }} 

end 
 
fun {Primes} {Sieve {Ints 2}} end 
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Lazy Filter 
For the Sieve program we need a lazy filter 
 
fun lazy {LFilter Xs F} 
   case Xs 
   of nil then nil 
   [] X|Xr then 
      if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end 
   end 
end 
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Primes in Haskell 
ints :: (Num a) => a -> [a] 
ints n = n : ints (n+1) 
 
sieve :: (Integral a) => [a] -> [a] 
sieve (x:xr) = x:sieve (filter (\y -> (y `mod` x /= 0)) xr) 
 
primes :: (Integral a) => [a] 
primes = sieve (ints 2) 
 
Functions in Haskell are lazy by default.  You can use take 20 
primes to get the first 20 elements of the list. 
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Define streams implicitly 

•  Ones = 1 | Ones 
•  Infinite stream of ones 

1 

cons 

Ones 
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Define streams implicitly 

•  Xs = 1 | {LMap Xs 
              fun {$ X}  X+1 end} 

•  What is Xs ? 

1 

cons 

+1 

Xs? 
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The Hamming problem 
•  Generate the first N elements of stream of integers of the 

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order) 

*3 

*2 

*5 
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The Hamming problem 
•  Generate the first N elements of stream of integers of the 

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order) 

*3 

*2 

*5 

Merge 
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The Hamming problem 
•  Generate the first N elements of stream of integers of the 

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order) 

*3 

*2 

*5 

Merge 

1 

cons 

H 
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Lazy File Reading 
fun {ToList FO} 

fun lazy {LRead} L T in 
 if {File.readBlock FO L T} then 
     T = {LRead} 
 else T = nil {File.close FO} end 
 L 

end 
{LRead} 

end  
•  This avoids reading the whole file in memory   
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List Comprehensions 
•  Abstraction provided in lazy functional languages that 

allows writing higher level set-like expressions 
•  In our context we produce lazy lists instead of sets 
•  The mathematical set expression 

–  {x*y | 1≤x ≤10, 1≤y ≤x} 
•  Equivalent List comprehension expression is 

–  [X*Y | X = 1..10 ; Y = 1..X] 

•  Example: 
–  [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10] 
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List Comprehensions 
•  The general form is 
•  [ f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...) 

    y ← gen(x, a1,...,an) ; guard(y,x,...) 
  .... 

]  
•  No linguistic support in Mozart/Oz, but can be easily 

expressed 
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Example 1 
•  z = [x#x | x ← from(1,10)] 
•  Z = {LMap {LFrom 1 10} fun{$ X} X#X end} 

•  z = [x#y | x ← from(1,10), y ← from(1,x)] 
•  Z = {LFlatten 

      {LMap {LFrom 1 10}  
              fun{$ X} {LMap {LFrom 1 X} 
                                 fun {$ Y} X#Y end 
                               } 

        end     
       } 

   } 
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Example 2 
•  z = [x#y | x ← from(1,10), y ← from(1,x), x+y≤10] 
•  Z ={LFilter  

 {LFlatten 
      {LMap {LFrom 1 10}  

              fun{$ X} {LMap {LFrom 1 X} 
                                 fun {$ Y} X#Y end 
                               } 

        end     
       } 

   } 
       fun {$ X#Y} X+Y=<10 end} } 
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List Comprehensions in Haskell 
 
lc1 = [(x,y) | x <- [1..10], y <- [1..x]] 
 
lc2 = filter (\(x,y)->(x+y<=10)) lc1 
 
lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10] 
 
 Haskell provides syntactic support for list comprehensions.  
List comprehensions are implemented using a built-in list 
monad. 



C. Varela 33 

Quicksort using list 
comprehensions 

 
quicksort :: (Ord a) => [a] -> [a] 
quicksort []    = [] 
quicksort (h:t) = quicksort [x | x <- t, x < h] ++ 
                          [h] ++ 
                          quicksort [x | x <-t, x >= h] 
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Higher-order programming 
•  Higher-order programming = the set of programming 

techniques that are possible with procedure values 
(lexically-scoped closures) 

•  Basic operations 
–  Procedural abstraction: creating procedure values with lexical 

scoping 
–  Genericity: procedure values as arguments 
–  Instantiation: procedure values as return values 
–  Embedding: procedure values in data structures 

•  Higher-order programming is the foundation of 
component-based programming and object-oriented 
programming 
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Embedding 
•  Embedding is when procedure values are put in data 

structures 
•  Embedding has many uses: 

–  Modules: a module is a record that groups together a set of related 
operations 

–  Software components: a software component is a generic function 
that takes a set of modules as its arguments and returns a new 
module.  It can be seen as specifying a module in terms of the 
modules it needs. 

–  Delayed evaluation (also called explicit lazy evaluation): build just 
a small part of a data structure, with functions at the extremities 
that can be called to build more.  The consumer can control 
explicitly how much of the data structure is built. 
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Explicit lazy evaluation 
•  Supply-driven evaluation. (e.g.The list is completely 

calculated independent of whether the elements are needed 
or not. ) 

•  Demand-driven execution.(e.g. The consumer of the list 
structure asks for new list elements when they are needed.) 

•  Technique: a programmed trigger. 
•  How to do it with higher-order programming?  The 

consumer has a function that it calls when it needs a new 
list element. The function call returns a pair: the list 
element and a new function. The new function is the new 
trigger: calling it returns the next data item and another 
new function. And so forth. 
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Explicit lazy functions 
fun lazy {From N}  

N | {From N+1} 
end 

fun {From N}  
    fun {$} N | {From N+1} end 
end 
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Implementation of lazy execution 

〈s〉 ::=  skip                                           empty statement 
      |   ...                                                    

 |  thread 〈s1〉 end       thread creation 
 |  {ByNeed fun{$} 〈e〉 end   〈x〉}  by need statement 

The following defines the syntax of a statement, 〈s〉 denotes a statement  

zero arity 
function 

variable 



C. Varela; Adapted from S. Haridi and P. Van Roy 39 

Implementation 

 some statement 

f 
x 

{ByNeed fun{$} 〈e〉 end  X,E } 
stack 

store 

A function value is created in 
the 
store (say f) 
the function f is associated 
with 
the variable x 
execution proceeds 
immediately to next statement  

f 
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Implementation 

 some statement 

f  
x : f 

{ByNeed fun{$} 〈e〉 end  X,E } 
stack 

store 

A function value is created in 
the 
store (say f) 
the function f is associated 
with 
the variable x 
execution proceeds 
immediately to next statement  

f 

(fun{$} 〈e〉 end  X,E) 
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Accessing the ByNeed variable 
•  X = {ByNeed fun{$} 111*111 end} (by thread T0) 

•  Access by some thread T1 
–  if X > 1000 then {Browse hello#X} end 

 
  or 

–  {Wait X} 
–  Causes X to be bound to 12321 (i.e. 111*111) 
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Implementation 
Thread T1 

1.  X is needed 
2.  start a thread T2 to execute F (the function) 
3.  only T2 is allowed to bind X 

Thread T2 

1.  Evaluate Y = {F} 
2.  Bind X the value Y 
3.  Terminate T2 

4.  Allow access on X 
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Lazy functions 
fun lazy {Ints N}  

N | {Ints N+1} 
end 

fun {Ints N}  
 fun {F} N | {Ints N+1} end 

in {ByNeed F} 
end 
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Exercises 
 
26.  Write a lazy append list operation LazyAppend.  Can you also write 

LazyFoldL?  Why or why not? 
27.  CTM Exercise 4.11.10 (pg 341) 
28.  CTM Exercise 4.11.13 (pg 342) 
29.  CTM Exercise 4.11.17 (pg 342) 
30.  Solve exercise 29 (Hamming problem) in Haskell. 


