Lambda Calculus (PDCS 2)
alpha-renaming, beta reduction, eta conversion, applicative and normal evaluation orders, Church-Rosser theorem, combinators, higher-order programming, recursion combinator, numbers, booleans

Carlos Varela
Rensselaer Polytechnic Institute

September 4, 2015
Lambda Calculus Syntax and Semantics

The syntax of a λ-calculus expression is as follows:

\[ e ::= v \quad \text{variable} \]
\[ \quad | \quad \lambda v. e \quad \text{functional abstraction} \]
\[ \quad | \quad (e e) \quad \text{function application} \]

The semantics of a λ-calculus expression is called beta-reduction:

\[ (\lambda x. E \ M) \Rightarrow E\{M/x\} \]

where we alpha-rename the lambda abstraction \( E \) if necessary to avoid capturing free variables in \( M \).
Function Composition in Lambda Calculus

S: \( \lambda x. (s \ x) \) (Square)
I: \( \lambda x. (i \ x) \) (Increment)

C: \( \lambda f. \lambda g. \lambda x. (f \ (g \ x)) \) (Function Composition)

Recall semantics rule:
\[ (\lambda x. E \ M) \Rightarrow E_{M/x} \]

((C S) I)

\[ ((\lambda f. \lambda g. \lambda x. (f \ (g \ x)) \ \lambda x. (i \ x)) \Rightarrow (\lambda g. \lambda x. (\lambda x. (s \ x) \ (g \ x)) \ \lambda x. (i \ x)) \Rightarrow \lambda x. (\lambda x. (s \ x) \ (\lambda x. (i \ x) \ x)) \Rightarrow \lambda x. (\lambda x. (s \ x) \ (i \ x)) \Rightarrow \lambda x. (s \ (i \ x)) \]
Does the order of evaluation change the final result? Consider:

\[ \lambda x. (\lambda x. (s x) (\lambda x. (i x) x)) \]

There are two possible evaluation orders:

- **Applicative Order**
  \[ \Rightarrow \lambda x. (\lambda x. (s x) (i x)) \]
  \[ \Rightarrow \lambda x. (s (i x)) \]

- **Normal Order**
  \[ \Rightarrow \lambda x. (\lambda x. (s x) (i x)) \]
  \[ \Rightarrow \lambda x. (s (\lambda x. (i x) x)) \]
  \[ \Rightarrow \lambda x. (s (i x)) \]

Is the final result always the same?

Recall semantics rule:

\[ (\lambda x. E M) \Rightarrow E\{M/x\} \]
Church-Rosser Theorem

If a lambda calculus expression can be evaluated in two different ways and both ways terminate, both ways will yield the same result.

Also called the *diamond* or *confluence* property.

Furthermore, if there is a way for an expression evaluation to terminate, using normal order will cause termination.
Consider:

\[(\lambda x. y (\lambda x. (x x) \lambda x. (x x)))\]

There are two possible evaluation orders:

\[(\lambda x. y (\lambda x. (x x) \lambda x. (x x))) \Rightarrow (\lambda x. y (\lambda x. (x x) \lambda x. (x x)))\]

and:

\[(\lambda x. y (\lambda x. (x x) \lambda x. (x x))) \Rightarrow y\]

Recall semantics rule:

\[(\lambda x. E M) \Rightarrow E{M/x}\]

Applicative Order

Normal Order

In this example, normal order terminates whereas applicative order does not.
Free and Bound Variables

The lambda functional abstraction is the only syntactic construct that *binds* variables. That is, in an expression of the form:

\[ \lambda v. e \]

we say that occurrences of variable \( v \) in expression \( e \) are *bound*. All other variable occurrences are said to be *free*.

E.g.,

\[ (\lambda x. \lambda y. (x y) (y w)) \]
Why $\alpha$-renaming?

Alpha renaming is used to prevent capturing free occurrences of variables when reducing a lambda calculus expression, e.g.,

\[
(\lambda x. \lambda y. (x y) (y w)) \\
\Rightarrow \lambda y. ((y w) y)
\]

This reduction **erroneously** captures the free occurrence of $y$.

A correct reduction first renames $y$ to $z$, (or any other *fresh* variable) e.g.,

\[
(\lambda x. \lambda y. (x y) (y w)) \\
\Rightarrow (\lambda x. \lambda z. (x z) (y w)) \\
\Rightarrow \lambda z. ((y w) z)
\]

where $y$ remains *free*.

C. Varela
**α-renaming**

Alpha renaming is used to prevent capturing free occurrences of variables when beta-reducing a lambda calculus expression.

In the following, we rename $x$ to $z$, (or any other *fresh* variable):

$$ (\lambda x. (y \, x) \, x) $$

$\xrightarrow{\alpha} (\lambda z. (y \, z) \, x)$

Only *bound* variables can be renamed. No *free* variables can be captured (become bound) in the process. For example, we cannot alpha-rename $x$ to $y$. 
**β-reduction**

\[
(\lambda x. E \ M) \rightarrow^\beta E\{M/x\}
\]

Beta-reduction may require alpha renaming to prevent capturing free variable occurrences. For example:

\[
(\lambda x. \lambda y. (x y) (y w)) \\
\overset{\alpha}{\rightarrow} (\lambda x. \lambda z. (x z) (y w)) \\
\rightarrow^\beta \lambda z. ((y w) z)
\]

Where the free \( y \) remains free.
\(\eta\)-conversion

\[
\lambda x. (E \ x) \xrightarrow{\eta} E
\]

if \(x\) is not free in \(E\).

For example:

\[
(\lambda x. \lambda y. (x \ y) \ (y \ w))
\]

\[
\xrightarrow{\alpha} (\lambda x. \lambda z. (x \ z) \ (y \ w))
\]

\[
\xrightarrow{\beta} \lambda z. ((y \ w) \ z)
\]

\[
\xrightarrow{\eta} (y \ w)
\]
Combinators

A lambda calculus expression with no free variables is called a combinator. For example:

I: \( \lambda x.x \) (Identity)
App: \( \lambda f.\lambda x.(f x) \) (Application)
C: \( \lambda f.\lambda g.\lambda x.(f (g x)) \) (Composition)
L: \( (\lambda x.(x x) \lambda x.(x x)) \) (Loop)
Cur: \( \lambda f.\lambda x.\lambda y.((f x) y) \) (Currying)
Seq: \( \lambda x.\lambda y.(\lambda z.y x) \) (Sequencing--normal order)
ASeq: \( \lambda x.\lambda y.(y x) \) (Sequencing--applicative order)

where \( y \) denotes a thunk, i.e., a lambda abstraction wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of its context.
Combinators in Functional Programming Languages

Functional programming languages have a syntactic form for lambda abstractions. For example the identity combinator:

$$\lambda x. x$$

can be written in Oz as follows:

```
fun {$ X} X end
```

in Haskell as follows:

```
\x -> x
```

and in Scheme as follows:

```
(lambda(x) x)
```
Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

```oz
fun {$ F}
  fun {$ X}
    fun {$ Y}
      {F X Y}
    end
  end
end
end
```

It takes a function of two arguments, F, and returns its curried version, e.g.,

```oz
{Curry Plus} 2 \ 3 \rightarrow 5
```

C. Varela

14
Recursion Combinator (Y or \textit{rec})

Suppose we want to express a factorial function in the \(\lambda\) calculus.

\[
f(n) = n! = \begin{cases} 
1 & n=0 \\
n*(n-1)! & n>0 
\end{cases}
\]

We may try to write it as:

\[
f : \lambda n. (\text{if} \ (=\ n\ 0) \ 1 \ (*\ n\ (f\ (-\ n\ 1))))
\]

But \(f\) is a free variable that should represent our factorial function.
We may try to pass \( f \) as an argument \((g)\) as follows:

\[
f: \lambda g. \lambda n. \begin{cases} 
1 & \text{if } (n = 0) \\
(* n (g (- n 1))) & \text{otherwise}
\end{cases}
\]

The type of \( f \) is:

\[
f: (Z \to Z) \to (Z \to Z)
\]

So, what argument \( g \) can we pass to \( f \) to get the factorial function?
Recursion Combinator (Y or rec)

\[ f: (Z \rightarrow Z) \rightarrow (Z \rightarrow Z) \]

\((ff)\) is not well-typed.

\((fi)\) corresponds to:

\[
f(n) = \begin{cases} 
1 & n=0 \\
n*(n-1) & n>0 
\end{cases}
\]

We need to solve the fixpoint equation:

\[(fX) = X\]
Recursion Combinator (Y or rec)

\[(f X) = X\]

The \(X\) that solves this equation is the following:

\[
X: \quad (\lambda x. (\lambda g. \lambda n. (if (= n 0) \\
1 \\
(* n (g (- n 1)))) \\
\lambda y. ((x x) y)) \\
\lambda x. (\lambda g. \lambda n. (if (= n 0) \\
1 \\
(* n (g (- n 1)))) \\
\lambda y. ((x x) y)))
\]
Recursion Combinator ($Y$ or $\text{rec}$)

$X$ can be defined as $(Yf)$, where $Y$ is the recursion combinator.

$$Y: \lambda f. (\lambda x. (f \lambda y. ((x x) y))$$

$$\lambda x. (f \lambda y. ((x x) y)))$$

You get from the normal order to the applicative order recursion combinator by $\eta$-expansion ($\eta$-conversion from right to left).
Natural Numbers in Lambda Calculus

$|0|: \lambda x.x$ (Zero)

$|1|: \lambda x.\lambda x.x$ (One)

⋮

$|n+1|: \lambda x.|n|$ (N+1)

$s: \lambda n.\lambda x.n$ (Successor)

(Recall semantics rule:

$(\lambda x. E M) \Rightarrow E\{M/x\}$

$(\lambda n. \lambda x.n \lambda x.x)$

$\Rightarrow \lambda x.\lambda x.x$
Booleans and Branching (\textit{if}) in \(\lambda\) Calculus

\begin{align*}
|\text{true}| & : \lambda x. \lambda y.x \quad & (\text{True}) \\
|\text{false}| & : \lambda x. \lambda y.y \quad & (\text{False}) \\
|\text{if}| & : \lambda b. \lambda t. \lambda e. ((b \ t) \ e) \quad & (\text{If})
\end{align*}

Recall semantics rule:
\[
(\lambda x.\, E \ M) \Rightarrow E\{M/x\}
\]
Exercises

6. PDCS Exercise 2.11.7 (page 31).
7. PDCS Exercise 2.11.9 (page 31).
8. PDCS Exercise 2.11.10 (page 31).
9. PDCS Exercise 2.11.11 (page 31).
10. Prove that your addition operation is correct using induction.
11. PDCS Exercise 2.11.12 (page 31). Test your representation of booleans in Haskell.