Actors (PDCS 4)
AMST actor language syntax, semantics, join continuations

Carlos Varela
Rensselaer Polytechnic Institute

October 6, 2015
Advantages of concurrent programs

- **Reactive programming**
 - User can interact with applications while tasks are running, e.g., stopping the transfer of a big file in a web browser.

- **Availability of services**
 - Long-running tasks need not delay short-running ones, e.g., a web server can serve an entry page while at the same time processing a complex query.

- **Parallelism**
 - Complex programs can make better use of multiple resources in new multi-core processor architectures, SMPs, LANs, WANs, grids, and clouds, e.g., scientific/engineering applications, simulations, games, etc.

- **Controllability**
 - Tasks requiring certain preconditions can suspend and wait until the preconditions hold, then resume execution transparently.
Disadvantages of concurrent programs

• Safety
 – « Nothing bad ever happens »
 – Concurrent tasks should not corrupt consistent state of program.
• Liveness
 – « Anything ever happens at all »
 – Tasks should not suspend and indefinitely wait for each other (deadlock).
• Non-determinism
 – Mastering exponential number of interleavings due to different schedules.
• Resource consumption
 – Threads can be expensive. Overhead of scheduling, context-switching, and synchronization.
 – Concurrent programs can run slower than their sequential counterparts even with multiple CPUs!
Overview of concurrent programming

• There are four basic approaches:
 – Sequential programming (no concurrency)
 – Declarative concurrency (streams in a functional language)
 – Message passing with active objects (Erlang, SALSA)
 – Atomic actions on shared state (Java)

• The atomic action approach is the **most difficult**, yet it is the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
 – Use the simplest approach that does the job: sequential if that is ok, else declarative concurrency if there is no observable nondeterminism, otherwise use actors and message passing.
Actors/SALSA

• Actor Model
 – A reasoning framework to model concurrent computations
 – Programming abstractions for distributed open systems

• SALSA
 – Simple Actor Language System and Architecture
 – An actor-oriented language for mobile and internet computing
 – Programming abstractions for internet-based concurrency, distribution, mobility, and coordination
1. Extend a functional language (\(\lambda\)-calculus + ifs and pairs) with actor primitives.

2. Define an operational semantics for actor configurations.

3. Study various notions of equivalence of actor expressions and configurations.

4. Assume fairness:
 - Guaranteed message delivery.
 - Individual actor progress.
Open Distributed Systems

- Addition of new components
- Replacement of existing components
- Changes in interconnections
Synchronous vs. Asynchronous Communication

• The π-calculus (and other process algebras such as CCS, CSP) take synchronous communication as a primitive.

• The actor model assumes asynchronous communication is the most primitive interaction mechanism.
Communication Medium

• In the π-calculus, channels are explicitly modeled. Multiple processes can share a channel, potentially causing interference.

• In the actor model, the communication medium is not explicit. Actors (active objects) are first-class, history-sensitive entities with an explicit identity used for communication.
Fairness

- The actor model theory assumes fair computations:
 1. Message delivery is guaranteed.
 2. Individual actor computations are guaranteed to progress.

Fairness is very useful for reasoning about equivalences of actor programs but can be hard/expensive to guarantee; in particular when distribution and failures are considered.
λ-Calculus as a Model for Sequential Computation

Syntax

\[
\begin{align*}
e & ::= v \quad \text{value} \\
& \quad | \lambda v.e \quad \text{functional abstraction} \\
& \quad | (e\ e) \quad \text{application}
\end{align*}
\]

Example of beta-reduction:

\[
(\ \lambda x.x^2 \ 2)
\]

\[
\rightarrow x^2\{2/x\}
\]
\(\lambda\)-Calculus extended with pairs

- \(\text{pr}(x,y)\) returns a pair containing \(x \& y\)
- \(\text{ispr}(x)\) returns \(t\) if \(x\) is a pair; \(f\) otherwise
- \(1^{\text{st}}(\text{pr}(x,y)) = x\) returns the first value of a pair
- \(2^{\text{nd}}(\text{pr}(x,y)) = y\) returns the second value of a pair
Actor Primitives

- **send\((a, v)\)**
 - Sends value \(v\) to actor \(a\).

- **new\((b)\)**
 - Creates a new actor with behavior \(b\) (a \(\lambda\)-calculus abstraction) and returns the identity/name of the newly created actor.

- **ready\((b)\)**
 - Becomes ready to receive a new message with behavior \(b\).
AMST Actor Language

Examples

\[b_5 = \text{rec}(\lambda y. \lambda x. \text{seq}(\text{send}(x, 5), \text{ready}(y))) \]
receives an actor name \(x \) and sends the number 5 to that actor, then it becomes ready to process new messages with the same behavior \(y \).

Sample usage:
\[
\text{send(new(b5), a)}
\]

A \textit{sink}, an actor that disregards all messages:
\[
sink = \text{rec}(\lambda b. \lambda m. \text{ready}(b))
\]
Reference Cell

cell = rec(λb. λc. λm.
 if (get?(m),
 seq(send(cust(m), c),
 ready(b(c)))
 if (set?(m),
 ready(b(contents(m))),
 ready(b(c))))

Using the cell:
let a = new(cell(0)) in seq(send(a, mkset(7)),
 send(a, mkset(2)),
 send(a, mkget(c)))

C. Varela
Join Continuations

Consider:

\[
\text{treeprod} = \text{rec}(\lambda f. \lambda \text{tree}. \\
 \quad \text{if(isnat(tree),} \\
 \quad \quad \text{tree,} \\
 \quad \quad f(\text{left(tree)}) \ast f(\text{right(tree)})))
\]

which multiplies all leaves of a tree, which are numbers.

You can do the “left” and “right” computations concurrently.
Tree Product Behavior

\[B_{\text{treeprod}} = \]
\[\text{rec}(\lambda b. \lambda m. \]
\[\text{seq}(\text{if}(\text{isnat}(\text{tree}(m))), \]
\[\text{send}(\text{cust}(m), \text{tree}(m)), \]
\[\text{let newcust}=\text{new}(B_{\text{joincont}}(\text{cust}(m))), \]
\[\text{lp} = \text{new}(B_{\text{treeprod}}), \]
\[\text{rp} = \text{new}(B_{\text{treeprod}}) \text{ in} \]
\[\text{seq}(\text{send}(\text{lp}, \]
\[\text{pr}(\text{left}(\text{tree}(m)), \text{newcust})), \]
\[\text{send}(\text{rp}, \]
\[\text{pr}(\text{right}(\text{tree}(m)), \text{newcust}))), \]
\[\text{ready}(b))) \]
Tree Product (continued)

\[B_{\text{joincont}} = \lambda \text{cust}. \lambda \text{firstnum}. \text{ready}(\lambda \text{num}. \text{seq}(\text{send}(\text{cust}, \text{firstnum} \times \text{num}), \text{ready}(\text{sink}))) \]
Sample Execution

(a) f(tree, cust)

(b) f(left(tree), JC) f(right(tree), JC)
Sample Execution

\[f(\text{left(tree),JC}) \]
Sample Execution

(e) Cust

(f) Cust

(num)

Cust

firstnum

Cust

firstnum * num
Operational Semantics for AMST Actor Language

• Operational semantics of actor model as a labeled transition relationship between actor configurations.

• Actor configurations model open system components:
 – Set of individually named actors
 – Messages “en-route”
Actor Configurations

\[k = \alpha \parallel \mu \]

\(\alpha \) is a function mapping actor names (represented as free variables) to actor states.

\(\mu \) is a multi-set of messages “en-route.”
Given $A = \text{Dom}(\alpha)$:

- If $a \in A$, then $\text{fv}(\alpha(a))$ is a subset of A.

- If $\langle a \leq v \rangle \in \mu$, then $\{a\} \cup \text{fv}(v)$ is a subset of A.
Consider the expression:

\[e = \text{send}(\text{new}(b5), a) \]

- The redex \(r \) represents the next sub-expression to evaluate in a left-first call-by-value evaluation strategy.
- The reduction context \(R \) (or \textit{continuation}) is represented as the surrounding expression with a \textit{hole} replacing the redex.

\[
\begin{align*}
\text{send}(\text{new}(b5), a) & = \text{send}(\mathbb{K}, a) \triangleright \text{new}(b5) \blacktriangleleft \\
e & = R \triangleright r \blacktriangleleft \text{ where } \\
R & = \text{send}(\mathbb{K}, a) \\
r & = \text{new}(b5)
\end{align*}
\]
Labeled Transition Relation

\[
\begin{align*}
\frac{e \rightarrow_\lambda e'}{
\alpha, [R \triangleright e \leftarrow]_a \parallel \mu \xrightarrow{[\text{fun}:a]} \alpha, [R \triangleright e' \leftarrow]_a \parallel \mu
}
\end{align*}
\]

\[
\begin{align*}
\alpha, [R \triangleright \text{new}(b) \leftarrow]_a \parallel \mu \xrightarrow{[\text{new}:a,a']} \alpha, [R \triangleright a' \leftarrow]_a, [\text{ready}(b)]_{a'} \parallel \mu
\end{align*}
\]

\text{a' fresh}

\[
\begin{align*}
\alpha, [R \triangleright \text{send}(a', v) \leftarrow]_a \parallel \mu \xrightarrow{[\text{snd}:a]} \alpha, [R \triangleright \text{nil} \leftarrow]_a \parallel \mu \uplus \{\langle a' \leftarrow v \rangle\}
\end{align*}
\]

\[
\begin{align*}
\alpha, [R \triangleright \text{ready}(b) \leftarrow]_a \parallel \{\langle a \leftarrow v \rangle\} \uplus \mu \xrightarrow{[\text{rcv}:a,v]} \alpha, [b(v)]_a \parallel \mu
\end{align*}
\]
Exercises

37. Write
get?
cust
set?
contents
mkset
mkget
to complete the reference cell example in the AMST actor language.

38. Modify the cell behavior to notify a customer when the cell value has been updated.

39. PDCS Exercise 4.6.6 (page 77).

40. PDCS Exercise 4.6.7 (page 78).