Programming Languages
(CSCI 4430/6430)
Part 1: Functional Programming: Summary

Carlos Varela
Rensselaer Polytechnic Institute

September 29, 2015
Other programming languages

Imperative
- Algol (Naur 1958)
- Cobol (Hopper 1959)
- BASIC (Kennedy and Kurtz 1964)
- Pascal (Wirth 1970)
- C (Kernighan and Ritchie 1971)
- Ada (Whitaker 1979)

Object-Oriented
- Smalltalk (Kay 1980)
- C++ (Stroustrup 1980)
- Eiffel (Meyer 1985)
- Java (Gosling 1994)
- C# (Hejlsberg 2000)

Actor-Oriented
- Act (Lieberman 1981)
- ABCL (Yonezawa 1988)
- Actalk (Briot 1989)
- Erlang (Armstrong 1990)
- E (Miller et al 1998)
- SALSA (Varela and Agha 1999)

Functional
- ML (Milner 1973)
- Scheme (Sussman and Steele 1975)
- Haskell (Hughes et al 1987)

Scripting
- Python (van Rossum 1985)
- Perl (Wall 1987)
- Tcl (Ousterhout 1988)
- Lua (Ierusalimschy et al 1994)
- JavaScript (Eich 1995)
- PHP (Lerdorf 1995)
- Ruby (Matsumoto 1995)
Language syntax

• Defines what are the legal programs, i.e. programs that can be executed by a machine (interpreter)
• Syntax is defined by grammar rules
• A grammar defines how to make ‘sentences’ out of ‘words’
• For programming languages: sentences are called statements (commands, expressions)
• For programming languages: words are called tokens
• Grammar rules are used to describe both tokens and statements
Language Semantics

• Semantics defines what a program does when it executes
• Semantics should be simple and yet allows reasoning about programs (correctness, execution time, and memory use)
The syntax of a λ-calculus expression is as follows:

\[
e ::= v \quad \text{variable} \\
| \quad \lambda v. e \quad \text{functional abstraction} \\
| \quad (e e) \quad \text{function application}
\]

The semantics of a λ-calculus expression is called beta-reduction:

\[
(\lambda x. E \ M) \Rightarrow E\{M/x\}
\]

where we alpha-rename the lambda abstraction E if necessary to avoid capturing free variables in M.
Alpha renaming is used to prevent capturing free occurrences of variables when beta-reducing a lambda calculus expression.

In the following, we rename x to z, (or any other fresh variable):

$$(\lambda x. (y x) x)$$

$$\xrightarrow{\alpha} (\lambda z. (y z) x)$$

Only bound variables can be renamed. No free variables can be captured (become bound) in the process. For example, we cannot alpha-rename x to y.

C. Varela
Beta-reduction may require alpha renaming to prevent capturing free variable occurrences. For example:

\((\lambda x. E M) \to^\beta E\{M/x\}\)

\((\lambda x. \lambda y. (x y) (y w)) \to^\alpha (\lambda x. \lambda z. (x z) (y w)) \to^\beta (\lambda z. ((y w) z))\)

Where the free \(y\) remains free.
η-conversion

\[\lambda x. (E x) \xrightarrow{\eta} E \]

if \(x \) is not free in \(E \).

For example:

\[(\lambda x. \lambda y. (x y) (y w)) \]

\[\xrightarrow{\alpha} (\lambda x. \lambda z. (x z) (y w)) \]

\[\xrightarrow{\beta} \lambda z. ((y w) z) \]

\[\xrightarrow{\eta} (y w) \]
Currying

The lambda calculus can only represent functions of one variable. It turns out that one-variable functions are sufficient to represent multiple-variable functions, using a strategy called *currying*.

E.g., given the mathematical function:
\[h(x, y) = x + y \]

of type
\[h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \]

We can represent \(h \) as \(h' \) of type:
\[h': \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \]

Such that
\[h(x, y) = h'(x)(y) = x + y \]

For example,
\[h'(2) = g, \text{ where } g(y) = 2 + y \]

We say that \(h' \) is the *curried* version of \(h \).
Function Composition in Lambda Calculus

S: \(\lambda x. (s\ x) \) (Square)

I: \(\lambda x. (i\ x) \) (Increment)

C: \(\lambda f. \lambda g. \lambda x. (f\ (g\ x)) \) (Function Composition)

\[((C\ S)\ I) \]

\[\Rightarrow (\lambda g. (\lambda x. (s\ x)\ (g\ x))\ (i\ x)) \]

\[\Rightarrow \lambda x. (\lambda x. (s\ x)\ (i\ x)) \]

\[\Rightarrow \lambda x. (s\ (i\ x)) \]

Recall semantics rule:

\[(\lambda x. E\ M) \Rightarrow E\{M/x\} \]
Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?
Consider:

\[\lambda x. (\lambda x. (s x) \ (\lambda x. (i x) \ x)) \]

There are two possible evaluation orders:

1. \[\lambda x. (\lambda x. (s x) \ (\lambda x. (i x) \ x)) \Rightarrow \lambda x. (\lambda x. (s x) \ (i x)) \Rightarrow \lambda x. (s \ (i x)) \]

Recall semantics rule:

\[(\lambda x. E \ M) \Rightarrow E{M/x} \]

2. \[\lambda x. (\lambda x. (s x) \ (\lambda x. (i x) \ x)) \Rightarrow \lambda x. (s \ (\lambda x. (i x) \ x)) \Rightarrow \lambda x. (s \ (i x)) \]

Applicative Order

Normal Order

Is the final result always the same?
Church-Rosser Theorem

If a lambda calculus expression can be evaluated in two different ways and both ways terminate, both ways will yield the same result.

Also called the *diamond* or *confluence* property.

Furthermore, if there is a way for an expression evaluation to terminate, using normal order will cause termination.
Order of Evaluation and Termination

Consider:

\[(\lambda x. y (\lambda x. (x x)) (\lambda x. (x x)))\]

There are two possible evaluation orders:

1. \[(\lambda x. y (\lambda x. (x x)) (\lambda x. (x x))) \Rightarrow (\lambda x. y (\lambda x. (x x)) (\lambda x. (x x)))\]
2. \[(\lambda x. y (\lambda x. (x x)) (\lambda x. (x x))) \Rightarrow y\]

Recall semantics rule:

\[(\lambda x. E M) \Rightarrow E\{M/x\}\]

Applicative Order

Normal Order

In this example, normal order terminates whereas applicative order does not.
Free and Bound Variables

The lambda functional abstraction is the only syntactic construct that *binds* variables. That is, in an expression of the form:

$$\lambda v. e$$

we say that free occurrences of variable v in expression e are *bound*. All other variable occurrences are said to be *free*.

E.g.,

$$\lambda x. \lambda y. (x y) (y w)$$

Bound Variables

Free Variables
A lambda calculus expression with *no free variables* is called a *combinator*. For example:

I: $\lambda x. x$ (Identity)

App: $\lambda f. \lambda x. (f x)$ (Application)

C: $\lambda f. \lambda g. \lambda x. (f (g x))$ (Composition)

L: $(\lambda x. (x x) \lambda x. (x x))$ (Loop)

Cur: $\lambda f. \lambda x. \lambda y. ((f x) y)$ (Currying)

Seq: $\lambda x. \lambda y. (\lambda z. y x)$ (Sequencing--normal order)

ASeq: $\lambda x. \lambda y. (y x)$ (Sequencing--applicative order)

where y denotes a *thunk*, *i.e.*, a lambda abstraction wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of its context.
Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

```oz
fun {$ F}
    fun {$ X}
        fun {$ Y}
            {F X Y}
        end
    end
end
```

It takes a function of two arguments, F, and returns its curried version, e.g.,

```
{{(Curry Plus) 2} 3} ⇒ 5
```
Recursion Combinator (Y or rec)

X can be defined as \((Yf)\), where \(Y\) is the recursion combinator.

\[
Y: \lambda f. (\lambda x. (f \lambda y. ((x x) y)))
\]

\[
Y: \lambda f. (\lambda x. (f (x x)) \\
\lambda x. (f (x x)))
\]

You get from the normal order to the applicative order recursion combinator by \(\eta\)-expansion (\(\eta\)-conversion from right to left).
Natural Numbers in Lambda Calculus

|0|: \(\lambda x.x \) (Zero)
|1|: \(\lambda x.\lambda x.x \) (One)

\(\ldots \)

|n+1|: \(\lambda x.|n| \) (N+1)

s: \(\lambda n.\lambda x.n \) (Successor)

\((s \ 0) \)

\((\lambda n.\lambda x.n \ \lambda x.x) \)

\(\Rightarrow \lambda x.\lambda x.x \)
Booleans and Branching (if) in λ Calculus

|true|: \(\lambda x. \lambda y. x \) (True)
|false|: \(\lambda x. \lambda y. y \) (False)

|if|: \(\lambda b. \lambda t. \lambda e. ((b \ t) \ e) \) (If)

Recall semantics rule:

\[(\lambda x. E \ M) \Rightarrow E\{M/x\} \]

\[(((\lambda b. \lambda t. \lambda e. ((b \ t) \ e) \ x) \ a) \ b) \]
\[\Rightarrow ((\lambda t. \lambda e. ((\lambda x. \lambda y. x \ t) \ e) \ a) \ b) \]
\[\Rightarrow (\lambda e. ((\lambda x. \lambda y. x \ a) \ e) \ b) \]
\[\Rightarrow ((\lambda x. \lambda y. x \ a) \ b) \]
\[\Rightarrow (\lambda y. \ a \ b) \]
\[\Rightarrow a \]
Church Numerals

<table>
<thead>
<tr>
<th>0</th>
<th>(\lambda f. \lambda x. x) (Zero)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\lambda f. \lambda x. (f x)) (One)</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>(\lambda f. \lambda x. (f \ldots (f x)\ldots)) (N applications of f to x)</td>
</tr>
</tbody>
</table>

s: \(\lambda n. \lambda f. \lambda x. (f ((n f) x)) \) (Successor)

Recall semantics rule:

\[
(\lambda x. E M) \Rightarrow E\{M/x\}
\]

\[
(\lambda n. \lambda f. \lambda x. (f ((n f) x)) \lambda f. \lambda x. x)
\]

\[
\Rightarrow \lambda f. \lambda x. (f ((\lambda f. \lambda x. x f) x))
\]

\[
\Rightarrow \lambda f. \lambda x. (f (\lambda x. x x))
\]

\[
\Rightarrow \lambda f. \lambda x. (f x)
\]

C. Varela
Church Numerals: isZero?

Recall semantics rule:

\[(\lambda x. E M) \Rightarrow E\{M/x\}\]

\[\text{isZero?}: \quad \lambda n. ((n \, \lambda x. \text{false}) \, \text{true}) \quad (\text{Is } n=0?)\]

\[(\text{isZero? } 0)\]

\[(\lambda n. ((n \, \lambda x. \text{false}) \, \text{true}) \, \lambda f. \lambda x. x)\]

\[\Rightarrow ((\lambda f. \lambda x. x) \, \lambda x. \text{false}) \, \text{true})\]

\[\Rightarrow (\lambda x. \text{true})\]

\[\Rightarrow \text{true}\]

\[(\text{isZero? } 1)\]

\[(\lambda n. ((n \, \lambda x. \text{false}) \, \text{true}) \, \lambda f. \lambda x. (f \, x))\]

\[\Rightarrow ((\lambda f. \lambda x. (f \, x)) \, \lambda x. \text{false}) \, \text{true})\]

\[\Rightarrow (\lambda x. (\lambda x. \text{false} \, x)) \, \text{true})\]

\[\Rightarrow (\lambda x. \text{false} \, \text{true})\]

\[\Rightarrow \text{false}\]

C. Varela
Functions

• Compute the factorial function:

\[n! = 1 \times 2 \times \cdots \times (n - 1) \times n \]

\[0! = 1 \]

\[n! = n \times (n - 1)! \text{ if } n > 0 \]

• Start with the mathematical definition

\begin{verbatim}
declare
fun {Fact N}
 if N==0 then 1 else N*{Fact N-1} end
end
\end{verbatim}

• Fact is declared in the environment

• Try large factorial \{Browse \{Fact 100\}\}
Factorial in Haskell

factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)
Structured data (lists)

• Calculate Pascal triangle
• Write a function that calculates the nth row as one structured value
• A list is a sequence of elements:

\[
[1 \ 4 \ 6 \ 4 \ 1]
\]
• The empty list is written nil
• Lists are created by means of "|" (cons)

\[
\text{declare} \\
\text{H=1} \\
\text{T = [2 3 4 5]} \\
\{\text{Browse H|T}\} \text{ % This will show [1 2 3 4 5]}
\]
Pattern matching

- Another way to take a list apart is by use of pattern matching with a case instruction

\[
\text{case } L \text{ of } H|T \text{ then } \{\text{Browse } H\} \{\text{Browse } T\} \\
\quad \text{else } \{\text{Browse ‘empty list’}\} \\
\text{end}
\]
Functions over lists

- Compute the function \{Pascal N\}
- Takes an integer N, and returns the Nth row of a Pascal triangle as a list

1. For row 1, the result is [1]
2. For row N, shift to left row N-1 and shift to the right row N-1
3. Align and add the shifted rows element-wise to get row N

\[
\begin{array}{c}
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1
\end{array}
\]

Shift right \([0 \ 1 \ 3 \ 3 \ 1]\)
Shift left \([1 \ 3 \ 3 \ 1 \ 0]\)
Functions over lists

```
declare
fun {Pascal N}
  if N==1 then [1]
  else
    {AddList
      {ShiftLeft {Pascal N-1}}
      {ShiftRight {Pascal N-1}}}
  end
end
```
Functions over lists (2)

fun {ShiftLeft L}
 case L of H|T then
 H|{ShiftLeft T}
 else [0]
 end
end

fun {ShiftRight L} 0|L end

fun {AddList L1 L2}
 case L1 of H1|T1 then
 case L2 of H2|T2 then
 H1+H2|{AddList T1 T2}
 end
 else nil end
end
Pattern matching in Haskell

• Another way to take a list apart is by use of pattern matching with a case instruction:

```haskell
    case l of (h:t) -> h:t
              []    -> []
end
```

• Or more typically as part of a function definition:

```haskell
    id (h:t) -> h:t
    id []    -> []
```
--- Pascal triangle row

```haskell
pascal :: Integer -> [Integer]
pascal 1 = [1]
pascal n = addList (shiftLeft (pascal (n-1)))
                   (shiftRight (pascal (n-1)))
```

where

```haskell
shiftLeft []     = [0]
shiftLeft (h:t)  = h:shiftLeft t
shiftRight []    = 0:
addList [] []    = []
addList (h1:t1) (h2:t2) = (h1+h2):addList t1 t2
```
Mathematical induction

• Select one or more inputs to the function
• Show the program is correct for the *simple cases* (base cases)
• Show that if the program is correct for a *given case*, it is then correct for the *next case*.
• For natural numbers, the base case is either 0 or 1, and for any number n the next case is n+1
• For lists, the base case is nil, or a list with one or a few elements, and for any list T the next case is H|T
Correctness of factorial

fun \{\text{Fact } N\}
 if \text{N} == 0 then 1 else \text{N} * \{\text{Fact } \text{N} - 1\} end
end

• Base Case \text{N} = 0: \{\text{Fact } 0\} returns 1
• Inductive Case \text{N} > 0: \{\text{Fact } \text{N}\} returns \text{N} * \{\text{Fact } \text{N} - 1\} assume \{\text{Fact } \text{N} - 1\} is correct, from the spec we see that \{\text{Fact } \text{N}\} is \text{N} * \{\text{Fact } \text{N} - 1\}
Iterative computation

• An iterative computation is one whose execution stack is bounded by a constant, independent of the length of the computation

• Iterative computation starts with an initial state S_0, and transforms the state in a number of steps until a final state S_{final} is reached:

$$S_0 \rightarrow S_1 \rightarrow \ldots \rightarrow S_{\text{final}}$$
The general scheme

fun \{\text{Iterate } S_i\}
 if \{\text{IsDone } S_i\} then \text{ } S_i
 else \text{ } S_{i+1} \text{ in }
 \text{ } S_{i+1} = \{\text{Transform } S_i\}
 \{\text{Iterate } S_{i+1}\}
 end
end

• \text{IsDone and Transform are problem dependent}
From a general scheme to a control abstraction (2)

fun \{\text{Iterate } S \text{ IsDone Transform}\}
 \text{if } \{\text{IsDone } S\} \text{ then } S
 \text{else } S1 \text{ in}
 S1 = \{\text{Transform } S\}
 \{\text{Iterate } S1 \text{ IsDone Transform}\}
 \text{end}
\text{end}

fun \{\text{Iterate } S_i\}
 \text{if } \{\text{IsDone } S_i\} \text{ then } S_i
 \text{else } S_{i+1} \text{ in}
 S_{i+1} = \{\text{Transform } S_i\}
 \{\text{Iterate } S_{i+1}\}
 \text{end}
\text{end}
Sqrt using the control abstraction

```plaintext
fun {Sqrt X}
  {Iterate
    1.0
    fun {$ G} {Abs X - G*G}/X < 0.000001 end
    fun {$ G} (G + X/G)/2.0 end
  }
end
```

Iterate could become a linguistic abstraction
Sqrt in Haskell

\[
\text{let } \text{sqrt } x = \text{head (dropWhile (not . goodEnough) sqrtGuesses)} \\
\text{where} \\
\text{goodEnough guess} = (\text{abs (} x - \text{guess} \times \text{guess})/x < 0.00001 \\
\text{improve guess} = (\text{guess} + x/\text{guess})/2.0 \\
\text{sqrtGuesses} = 1:(\text{map improve sqrtGuesses})
\]

This sqrt example uses infinite lists enabled by lazy evaluation, and the map control abstraction.
Higher-order programming

- **Higher-order programming** = the set of programming techniques that are possible with procedure values (lexically-scoped closures)

- **Basic operations**
 - **Procedural abstraction**: creating procedure values with lexical scoping
 - **Genericity**: procedure values as arguments
 - **Instantiation**: procedure values as return values
 - **Embedding**: procedure values in data structures

- Higher-order programming is the foundation of component-based programming and object-oriented programming
Procedural abstraction

- Procedural abstraction is the ability to convert any statement into a procedure value
 - A procedure value is usually called a closure, or more precisely, a lexically-scoped closure
 - A procedure value is a pair: it combines the procedure code with the environment where the procedure was created (the contextual environment)
- Basic scheme:
 - Consider any statement <s>
 - Convert it into a procedure value: \(P = \text{proc} \{\$\} <s> \text{ end} \)
 - Executing \{P\} has exactly the same effect as executing <s>
Procedure values

- Constructing a procedure value in the store is not simple because a procedure may have external references

```latex
local P Q in
    P = proc {$ \ldots \} \{Q \ldots\} end
    Q = proc {$ \ldots\} \{Browse hello\} end
local Q in
    Q = proc {$ \ldots\} \{Browse hi\} end
    \{P \ldots\}
end
end
```
Procedure values (2)

```
local P Q in
  P = proc {$ …} {Q …} end
  Q = proc {$ …} {Browse hello} end
local Q in
  Q = proc {$ …} {Browse hi} end end
end
```

```
x₁ (•, •)
    proc {$ …} {Q …} end
    Q → x₂

x₂ (•, •)
    proc {$ …} {Browse hi} end
    P ...
```

```
Browse → x₀
```
Genericity

- Replace specific entities (zero 0 and addition +) by function arguments
- The same routine can do the sum, the product, the logical or, etc.

fun {SumList L}
 case L
 of nil then 0
 [] X|L2 then X+{SumList L2}
 end
end

fun {FoldR L F U}
 case L
 of nil then U
 [] X|L2 then {F X {FoldR L2 F U}}
 end
end
Genericity in Haskell

• Replace specific entities (zero 0 and addition +) by function arguments

• The same routine can do the sum, the product, the logical or, etc.

\[
\text{sumlist} :: (\text{Num } a) \Rightarrow \left[a \right] \rightarrow a \\
\text{sumlist} \left[\right] = 0 \\
\text{sumlist} \left(h : t \right) = h + \text{sumlist} t
\]

\[
\text{foldr'} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow \left[a \right] \rightarrow b \\
\text{foldr'} _ u \left[\right] = u \\
\text{foldr'} f u \left(h : t \right) = f \left(h \left(\text{foldr'} f u t \right) \right)
\]
Instantiation

- Instantiation is when a procedure returns a procedure value as its result
- Calling `{FoldFactory fun {F L} in FoldR L end}` returns a function that behaves identically to `SumList`, which is an « instance » of a folding function
Embedding

- Embedding is when procedure values are put in data structures
- Embedding has many uses:
 - Modules: a module is a record that groups together a set of related operations
 - Software components: a software component is a generic function that takes a set of modules as its arguments and returns a new module. It can be seen as specifying a module in terms of the modules it needs.
 - Delayed evaluation (also called explicit lazy evaluation): build just a small part of a data structure, with functions at the extremities that can be called to build more. The consumer can control explicitly how much of the data structure is built.
Control Abstractions

```haskell
fun {FoldL Xs F U}
  case Xs
  of nil then U
  [] X|Xr then {FoldL Xr F {F X U}}
  end
end
end

What does this program do?
{Browse {FoldL [1 2 3]
  fun {$ X Y} X|Y end nil}}
```
FoldL in Haskell

\[
\text{foldl}' :: (b \to a \to b) \to b \to [a] \to b \\
\text{foldl}' \ _ \ u \ [] \ = \ u \\
\text{foldl}' \ f \ u \ (h:t) \ = \ \text{foldl}' \ f \ (f \ u \ h) \ t
\]

Notice the unit u is of type b, and the function f is of type b->a->b.
List-based techniques

fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 {F X} | {Map Xr F}
 end
end

fun {Filter Xs P}
 case Xs
 of nil then nil
 [] X|Xr then
 {P X} then
 X | {Filter Xr P}
 [] X|Xr then
 {Filter Xr P}
 end
end
Map in Haskell

\[
\text{map'} :: (a -> b) -> [a] -> [b] \\
\text{map'} _ [] = [] \\
\text{map'} f (h:t) = f h: \text{map'} f t
\]

_ means that the argument is not used (read “don’t care”).
map’ is to distinguish it from the Prelude map function.
Filter in Haskell

\[\text{filter'} :: (a -> \text{Bool}) \to [a] \to [a] \]
\[\text{filter'} _ \ [\] \ = \ [] \]
\[\text{filter'} \ p \ (h:t) = \text{if } p \ h \ \text{then } h: \text{filter'} \ p \ t \]
\[\quad \quad \quad \text{else } \text{filter'} \ p \ t \]
Filter as FoldR application

fun {Filter P L}
 {FoldR fun {$ H T}
 if {P H} then
 H|T
 else T end
 end nil L}
end

filter'' :: (a-> Bool) -> [a] -> [a]
filter'' p l = foldr (
 \h t -> if p h
 then h:t
 else t) [] l
Lazy evaluation

• The functions written so far are evaluated eagerly (as soon as they are called)
• Another way is lazy evaluation where a computation is done only when the results is needed

• Calculates the infinite list:
\[
0 \mid 1 \mid 2 \mid 3 \mid ... \]

```
declare
fun lazy {Ints N}
  N|{Ints N+1}
end
```
Lazy evaluation (2)

• Write a function that computes as many rows of Pascal’s triangle as needed
• We do not know how many beforehand
• A function is lazy if it is evaluated only when its result is needed
• The function PascalList is evaluated when needed

```plaintext
fun lazy {PascalList Row}
  Row | {PascalList
    {AddList
      {ShiftLeft Row}
      {ShiftRight Row}}}
end
```
Larger Example: The Sieve of Eratosthenes

- Produces prime numbers
- It takes a stream 2...N, peals off 2 from the rest of the stream
- Delivers the rest to the next sieve
Lazy Sieve

fun lazy {Sieve Xs}
 X|Xr = Xs in
 X | {Sieve {LFilter
 Xr
 fun {$_ Y} Y mod X \neq 0 end
 }}
end

fun {Primes} {Sieve {Ints 2}} end
Lazy Filter

For the Sieve program we need a lazy filter

fun lazy {LFilter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
 end
 end
end
Primes in Haskell

```haskell
ints :: (Num a) => a -> [a]
ints n = n : ints (n+1)

sieve :: (Integral a) => [a] -> [a]
sieve (x:xr) = x:sieve (filter (\y -> (y `mod` x /= 0)) xr)

primes :: (Integral a) => [a]
primes = sieve (ints 2)
```

Functions in Haskell are lazy by default. You can use `take 20 primes` to get the first 20 elements of the list.
List Comprehensions

- Abstraction provided in lazy functional languages that allows writing higher level set-like expressions
- In our context we produce lazy lists instead of sets
- The mathematical set expression
 - \(\{ x \cdot y \mid 1 \leq x \leq 10, \ 1 \leq y \leq x \} \)
- Equivalent List comprehension expression is
 - \([X \cdot Y \mid X = 1..10 \ ; \ Y = 1..X]\)
- Example:
 - \([1\cdot1 \ 2\cdot1 \ 2\cdot2 \ 3\cdot1 \ 3\cdot2 \ 3\cdot3 \ ... \ 10\cdot10]\)
List Comprehensions

• The general form is
• \[
\begin{array}{l}
\left[\text{f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...)} \\
y ← \text{gen(x, a1,...,an) ; guard(y,x,...)} \\
....
\right]
\end{array}
\]
• No linguistic support in Mozart/Oz, but can be easily expressed
Example 1

- \(z = [x#x \mid x \leftarrow \text{from}(1,10)] \)
- \(Z = \{\text{LMap} \{\text{LFrom} 1\ 10\} \ \text{fun} \{\$ X\} \ X#X \ \text{end}\} \)

- \(z = [x#y \mid x \leftarrow \text{from}(1,10), y \leftarrow \text{from}(1,x)] \)
- \(Z = \{\text{LFlatten} \)
 \(\{\text{LMap} \{\text{LFrom} 1\ 10\} \)
 \(\text{fun} \{\$ X\} \ \{\text{LMap} \{\text{LFrom} 1\ X\} \)
 \(\text{fun} \{\$ Y\} \ X#Y \ \text{end} \)
 \(\} \)
 \(\} \)
\(\} \)
Example 2

- \(z = [x\#y \mid x \leftarrow \text{from}(1,10), y \leftarrow \text{from}(1,x), x+y \leq 10] \)
- \(Z = \{ \text{LFilter} \}
 \{ \text{LFlatten} \}
 \{ \text{LMap} \ \{ \text{LFrom 1 10} \} \}
 \{ \text{fun} \ \{ \$ X \} \ \{ \text{LMap} \ \{ \text{LFrom 1 X} \} \text{fun} \ \{ \$ Y \} \ X\#Y \ \text{end} \text{end} \text{end} \}
 \}
 \text{fun} \ \{ \$ X\#Y \} \ X+Y \leq 10 \ \text{end}\} \}
List Comprehensions in Haskell

\[lc1 = [(x,y) \mid x \leftarrow \{1\ldots10\}, y \leftarrow \{1\ldots x\}]\]

\[lc2 = \text{filter} \ (\lambda (x,y) \rightarrow (x+y\leq 10)) \ lc1\]

\[lc3 = [(x,y) \mid x \leftarrow \{1\ldots10\}, y \leftarrow \{1\ldots x\}, x+y\leq 10]\]

Haskell provides syntactic support for list comprehensions. List comprehensions are implemented using a built-in list monad.
Quicksort using list comprehensions

```haskell
quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (h:t) = quicksort [x | x <- t, x < h] ++ [h] ++
                      [h] ++
quicksort [x | x <- t, x >= h]
```
Types of typing

• Languages can be **weakly typed**
 – Internal representation of types can be manipulated by a program
 • e.g., a string in C is an array of characters ending in ‘\0’.

• **Strongly typed** programming languages can be further subdivided into:
 – **Dynamically typed** languages
 • Variables can be bound to entities of any type, so in general the type is only known at **run-time**, e.g., Oz, SALSA.
 – **Statically typed** languages
 • Variable types are known at **compile-time**, e.g., C++, Java.
Type Checking and Inference

- **Type checking** is the process of ensuring a program is well-typed.
 - One strategy often used is *abstract interpretation*:
 - The principle of getting partial information about the answers from partial information about the inputs
 - Programmer supplies types of variables and type-checker deduces types of other expressions for consistency

- **Type inference** frees programmers from annotating variable types: types are inferred from variable usage, e.g. ML, Haskell.
Abstract data types

• A datatype is a set of values and an associated set of operations
• A datatype is abstract only if it is completely described by its set of operations regardless of its implementation
• This means that it is possible to change the implementation of the datatype without changing its use
• The datatype is thus described by a set of procedures
• These operations are the only thing that a user of the abstraction can assume
Example: A Stack

- Assume we want to define a new datatype \(\langle \text{stack T} \rangle \) whose elements are of any type T

 - fun \(\{ \text{NewStack} \} \): \(\langle \text{Stack T} \rangle \)
 - fun \(\{ \text{Push} \langle \text{Stack T} \rangle \langle T \rangle \} \): \(\langle \text{Stack T} \rangle \)
 - fun \(\{ \text{Pop} \langle \text{Stack T} \rangle \langle T \rangle \} \): \(\langle \text{Stack T} \rangle \)
 - fun \(\{ \text{IsEmpty} \langle \text{Stack T} \rangle \} \): \(\langle \text{Bool} \rangle \)

- These operations normally satisfy certain laws:

 - \(\{ \text{IsEmpty} \{ \text{NewStack} \} \} = \text{true} \)
 - for any \(E \) and \(S0, S1=\{ \text{Push} S0 E \} \) and \(S0=\{ \text{Pop} S1 E \} \) hold
 - \(\{ \text{Pop} \{ \text{NewStack} \} E \} \) raises error
Stack (another implementation)

fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E = X S1 end end
fun {IsEmpty S} S==nil end

fun {NewStack} emptyStack end
fun {Push S E} stack(E S) end
fun {Pop S E} case S of stack(X S1) then E = X S1 end end
fun {IsEmpty S} S==emptyStack end
Stack data type in Haskell

data Stack a = Empty | Stack a (Stack a)

newStack :: Stack a
newStack = Empty

push :: Stack a -> a -> Stack a
push s e = Stack e s

pop :: Stack a -> (Stack a,a)
pop (Stack e s) = (s,e)

isempty :: Stack a -> Bool
isempty Empty = True
isempty (Stack _ _) = False
Secure abstract data types: A secure stack

With the wrapper & unwrapper we can build a secure stack

local Wrap Unwrap in

{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E}{Unwrap S} end
fun {Pop S E}
 case {Unwrap S} of X|S1 then
 E=X {Wrap S1} end
end
fun {IsEmpty S} {Unwrap S}==nil end
end

proc {NewWrapper ?Wrap ?Unwrap}
 Key={NewName}
in
 fun {Wrap X}
 fun ${ K}
 if K==Key then X end
 end
 end
 fun {Unwrap C}
 {C Key}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
Stack abstract data type as a module in Haskell

module StackADT (Stack,newStack,push,pop,isEmpty) where

data Stack a = Empty | Stack a (Stack a)
newStack = Empty
...

• Modules can then be imported by other modules, e.g.:

module Main (main) where
import StackADT (Stack, newStack,push,pop,isEmpty)

main = do print (push (push newStack 1) 2)
Declarative operations (1)

• An operation is *declarative* if whenever it is called with the same arguments, it returns the same results independent of any other computation state.

• A declarative operation is:
 – *Independent* (depends only on its arguments, nothing else)
 – *Stateless* (no internal state is remembered between calls)
 – *Deterministic* (call with same operations always give same results)

• Declarative operations can be composed together to yield other declarative components
 – All basic operations of the declarative model are declarative and combining them always gives declarative components
Why declarative components (1)

- There are two reasons why they are important:
- *(Programming in the large)* A declarative component can be written, tested, and proved correct independent of other components and of its own past history.
 - The complexity (reasoning complexity) of a program composed of declarative components is the *sum* of the complexity of the components
 - In general the reasoning complexity of programs that are composed of nondeclarative components explodes because of the intimate interaction between components
- *(Programming in the small)* Programs written in the declarative model are much easier to reason about than programs written in more expressive models (e.g., an object-oriented model).
 - Simple algebraic and logical reasoning techniques can be used
Monads

• Purely functional programming is declarative in nature: whenever a function is called with the same arguments, it returns the same results independent of any other computation state.

• How to model the real world (that may have context dependences, state, nondeterminism) in a purely functional programming language?
 – Context dependences: e.g., does file exist in expected directory?
 – State: e.g., is there money in the bank account?
 – Nondeterminism: e.g., does bank account deposit happen before or after interest accrual?

• Monads to the rescue!
Monad class

• The Monad class defines two basic operations:

```haskell
class Monad m where

    (>>=) :: m a -> (a -> m b) -> m b -- bind
    return :: a -> m a
    fail   :: String -> m a

m >>= k = m >>= \_ -> k
```

• The >>= infix operation binds two monadic values, while
 the return operation injects a value into the monad
 (container).

• Example monadic classes are IO, lists ([]), and Maybe.
do syntactic sugar

- In the `IO` class, `x >>= y`, performs two actions sequentially (like the `Seq` combinator in the lambda-calculus) passing the result of the first into the second.

- Chains of monadic operations can use `do`:

  ```
  do e1 ; e2 = e1 >> e2
  do p <- e1; e2 = e1 >>= \p -> e2
  ```

- Pattern match can fail, so the full translation is:

  ```
  do p <- e1; e2 = e1 >>= (\v -> case of p -> e2
                          _ -> fail "s")
  ```

- Failure in IO monad produces an error, whereas failure in the List monad produces the empty list.
Monad class laws

• All instances of the Monad class should respect the following laws:

\[
\begin{align*}
\text{return } a & \gg= k & = k \ a \\
m & \gg= \text{return} & = m \\
x s & \gg= \text{return} \ . \ f & = \text{fmap} \ f \ x s \\
m & \gg= (\lambda x \to k \ x \gg= h) & = (m \gg= k) \gg= h
\end{align*}
\]

• These laws ensure that we can bind together monadic values with \(\gg= \) and inject values into the monad (container) using \(\text{return} \) in consistent ways.

• The MonadPlus class includes an \(\text{mzero} \) element and an \(\text{mplus} \) operation. For lists, \(\text{mzero} \) is the empty list ([]), and the \(\text{mplus} \) operation is list concatenation (++).

C. Varela
List comprehensions with monads

\[\text{lc1} = [(x,y) \mid x \leftarrow [1..10], y \leftarrow [1..x]] \]

\[\text{lc1'} = \text{do} \ x \leftarrow [1..10] \]
\[\quad y \leftarrow [1..x] \]
\[\quad \text{return } (x,y) \]

\[\text{lc1''} = [1..10] >>= (\lambda x -> [1..x] >>= (\lambda y -> \text{return } (x,y))) \]

List comprehensions are implemented using a built-in list monad. Binding \((l >>= f)\) applies the function \(f\) to all the elements of the list \(l\) and concatenates the results. The return function creates a singleton list.
List comprehensions with monads (2)

\[lc3 = [(x,y) \mid x \leftarrow [1..10], y \leftarrow [1..x], x+y \leq 10] \]
\[lc3' = do x \leftarrow [1..10] \]
\[
\begin{align*}
 & y \leftarrow [1..x] \\
 & \text{True} \leftarrow \text{return} (x+y \leq 10) \\
 & \text{return} (x,y)
\end{align*}
\]

\[lc3'' = [1..10] >>= (\lambda x \rightarrow \\
\begin{align*}
 & [1..x] >>= (\lambda y \rightarrow \\
 & \text{return} (x+y \leq 10) >>= \\
 & (\lambda b -> \text{case} \ b \ \text{of} \ True -> \text{return} (x,y); _ -> \text{fail ""})))
\end{align*}
\]

Guards in list comprehensions assume that \texttt{fail} in the List monad returns an empty list.
Monads summary

• Monads enable keeping track of imperative features (state) in a way that is modular with purely functional components.
 – For example, fib remains functional, yet the R monad enables us to keep a count of instructions separately.

• Input/output, list comprehensions, and optional values (Maybe class) are built-in monads in Haskell.

• Monads are useful to modularly define semantics of domain-specific languages.