
CSCI-1200 Data Structures — Fall 2016
Homework 7 — Halloween Costumes

In this assignment you will design a data structure to maintain the inventory and customer data for a
costume shop. The shop carries a variety of costumes and carries multiple copies of some of the more
popular costumes. Customers come into the shop and rent the costumes; however, the customers are fickle
and sometimes change their mind about what to be for Halloween. Each customer is only allowed to rent
one costume at a time. Your task is to streamline the costume rental process and handle queries about the
availability of costumes and “who’s wearing what” to the next party. By using STL’s associative container
(map) we can make this system quite efficient and elegant. Please carefully read the entire assignment before
beginning your implementation.

Input/Output & Basic Functionality

Your program will read from std::cin and write to std::cout, but we expect you will redirect the input
(& output) to trick your program into reading from & writing to files – see the course webpage:
“Misc. C++ Programming Information”. Each line begins with a character signaling which of four operations
should be performed:

a ghost 2 This operation will add a specified number of number of copies of a particular costume type
into the costume shop inventory. The name of the costume is a single string with no spaces (underscores
will be used if the costume name is multiple words, e.g., Elvis_Presley). If the costume is already
in the shop, the number of copies is incremented. A useful message is printed to the screen following
successful execution of this file. See the sample output.

r Sally Smith princess In this operation, a customer is attempting to rent a particular costume from
the shop. The customer name is specified by two strings: his/her first and last names, in that order,
and then the costume is specified by a single string, as above. If the shop does not carry that type
of costume, if no copies are currently available, or if the person is currently renting a copy of this
costume, then the request is declined with an appropriate message (see sample output). Each person is
only allowed to rent one costume at a time; thus, if the person is currently renting a different costume,
then that costume must first be returned, which will be done automatically by your code. Messages
indicating the returned costume (if any) and rented costume are output.

l gorilla This operation looks up the specified costume and outputs the number of copies available
for checkout and the names of the customers who currently have this type of costume rented. The
customers are printed in chronological order, with the oldest rental first. If the shop does not carry
this type of costume then an appropriate message is printed.

p This operation prints all customers who have ever attempted to rent from the shop (in alphabetical order
by last name then first name) and the costume (if any) that they are currently renting.

Examples of the messages your program must output are available on the course website. To receive full
credit on the assignment, please follow these examples exactly. To see if your program is performing perfectly,
you may use the Unix library program, diff which takes two files as arguments and outputs the differences
between them. diff is included with Cygwin, which may already be installed on your laptop. WinDiff is
another option for Windows users. Please see a TA or the instructor in office hours if you have a question
about these programs.

Performance & Order Notation

You must carefully consider the performance of each of the costume shop operations and choose data struc-
tures to achieve efficient performance. Let n be the number of different costumes in the shop, m be the

http://www.cs.rpi.edu/academics/courses/fall16/csci1200/other_information.php


maximum number of copies of a given costume, and c be the number of customers who visit the shop. All
of the operations should have sub-linear expected running time with respect to n. Furthermore, the ’a’,
’r’, and ’l’ commands should have sub-linear expected running time with respect to c. Hint: That means
you should use maps. In fact, you’ll need at least two of them! In your README.txt file include the order
notation for each operation in terms of n, m, and c.

You are not explicitly required to create any new classes when completing this assignment, but please do so if
it will improve your program design. We expect you to use const and pass by reference/alias as appropriate
throughout your assignment. We have provided a partial implementation of the main program to get you
started. You may use none, a little, or all of this, as you choose, but we strongly urge you to examine it
carefully.

Data Structure Diagram – NEW! Oct 28th @ 6pm

As part of your electronic submission, you must include a neat diagram the overall data structures for this
assignment. Follow the conventions from lecture for diagramming maps, lists, and vectors. Use this diagram
to communicate design choices you made and how this data structure works. You can illustrate how a
specific operation (just choose one) results in the insertion, modification, or removal of data in the structure.
Consider diagramming the small_input.txt example, but you may change some of the details.

The accepted file formats for this diagram are .pdf, .png, or .jpg. Name your file diagram.pdf or diagram.png
or diagram.jpg (depending on the filetype). You may draw this diagram with pen/pencil & paper and scan
or take a photo with a camera or you may use an electronic drawing/diagram software.

You will be graded on neatness, clarity, and amount of informative detail included in the picture. This
diagram will be worth approximately 7 points of the total HW grade.

Extra Credit

For extra credit, re-implement the functionality of your program without maps (use vectors and/or lists
instead). Have your program take in an optional command line argument to specify the non-map version.
How does the order notation for the expected performance of the program change? Test the two versions of
the program with larger datasets to confirm your predictions of the performance differences. You can use the
UNIX time command to measure the performance. Also, make up new larger test cases as necessary. Write
up your analysis in your README.txt and submit both versions of the code – the map version should run
by default (with no command line arguments).

Submission

Use good coding style when you design and implement your program. Be sure to write your own new test
cases and don’t forget to comment your code! Use the provided template README.txt file for notes you want
the grader to read. You must do this assignment on your own, as described in the “Collaboration Policy
& Academic Integrity” handout. If you did discuss this assignment, problem solving techniques, or error
messages, etc. with anyone, please list their names in your README.txt file.

2

http://www.cs.rpi.edu/academics/courses/fall16/csci1200/academic_integrity.php
http://www.cs.rpi.edu/academics/courses/fall16/csci1200/academic_integrity.php

