Lazy Evaluation:
Infinite data structures, set comprehensions (CTM Section 4.5)

Carlos Varela
RPI
September 20, 2016

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
Lazy evaluation

• The functions written so far are evaluated eagerly (as soon as they are called)

• Another way is lazy evaluation where a computation is done only when the results is needed

• Calculates the infinite list: 0 | 1 | 2 | 3 | ...

```
declare
fun lazy {Ints N}
   N|{Ints N+1}
end
```
let sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)
where
 goodEnough guess = (abs (x – guess*guess))/x < 0.00001
 improve guess = (guess + x/guess)/2.0
 sqrtGuesses = 1:(map improve sqrtGuesses)

Infinite lists (sqrtGuesses) are enabled by lazy evaluation.
Map in Haskell

\[
\begin{align*}
\text{map'} &:: (a \to b) \to [a] \to [b] \\
\text{map'} _ \ [] & = [] \\
\text{map'} f \ (h:t) & = f \ h : \text{map'} f \ t
\end{align*}
\]

Functions in Haskell are lazy by default. That is, they can act on infinite data structures by delaying evaluation until needed.
Lazy evaluation (2)

- Write a function that computes as many rows of Pascal’s triangle as needed
- We do not know how many beforehand
- A function is lazy if it is evaluated only when its result is needed
- The function `PascalList` is evaluated when needed

```
fun lazy {PascalList Row}
Row | {PascalList
  {AddList
    {ShiftLeft Row}
    {ShiftRight Row}}}
end
```
Lazy evaluation (3)

- Lazy evaluation will avoid redoing work if you decide first you need the 10th row and later the 11th row
- The function continues where it left off

```plaintext
declare
L = {PascalList [1]}
{Browse L}
{Browse L.1}
{Browse L.2.1}

L<Future>
[1]
[1 1]
```
Lazy execution

- Without lazyness, the execution order of each thread follows textual order, i.e., when a statement comes as the first in a sequence it will execute, whether or not its results are needed later.
- This execution scheme is called *eager execution*, or *supply-driven* execution.
- Another execution order is that a statement is executed only if its results are needed somewhere in the program.
- This scheme is called *lazy evaluation*, or *demand-driven* evaluation (some languages use lazy evaluation by default, e.g., Haskell).
Example

\[B = \{F1 \ X\} \]
\[C = \{F2 \ Y\} \]
\[D = \{F3 \ Z\} \]
\[A = B+C \]

- Assume F1, F2 and F3 are lazy functions
- B = \{F1 \ X\} and C = \{F2 \ Y\} are executed only if and when their results are needed in A = B+C
- D = \{F3 \ Z\} is not executed since it is not needed
Example

- In lazy execution, an operation suspends until its result is needed
- The suspended operation is triggered when another operation needs the value for its arguments
- In general, multiple suspended operations could start concurrently
Example II

- In data-driven execution, an operation suspends until the values of its arguments results are available.
- In general the suspended computation could start concurrently.

\[B = \{F1 \, X\} \]
\[C = \{F2 \, Y\} \]
\[A = B + C \]
Using Lazy Streams

fun \{\text{Sum Xs A Limit}\}
 \text{if Limit}>0 \text{ then}
 \begin{align*}
 \text{case Xs of } X|Xr \text{ then} \\
 &\{\text{Sum Xr A+X Limit-1}\} \\
 &\text{end}
 \end{align*}
 \text{end}
 \text{else A end end}

local Xs S in
 Xs=\{\text{Ints 0}\}
 S=\{\text{Sum Xs 0 1500}\}
 \{\text{Browse S}\}
 \text{end}
How does it work?

fun \{\text{Sum } Xs \text{ A Limit}\}
 \text{if Limit}>0 \text{ then}
 \text{case } Xs \text{ of } X|Xr \text{ then}
 \{\text{Sum } Xr \text{ A+X Limit-1}\}
 \text{end}
 \text{else } A \text{ end }
\text{end}

fun lazy \{\text{Ints N}\}
 N \mid \{\text{Ints N+1}\}
\text{end}

local Xs S in
 Xs = \{\text{Ints 0}\}
 S = \{\text{Sum Xs 0 1500}\}
 \{\text{Browse S}\}
\text{end}
Improving throughput

- Use a lazy buffer
- It takes a lazy input stream In and an integer N, and returns a lazy output stream Out
- When it is first called, it first fills itself with N elements by asking the producer
- The buffer now has N elements filled
- Whenever the consumer asks for an element, the buffer in turn asks the producer for another element
The buffer example

C. Varela; Adapted from S. Haridi and P. Van Roy
The buffer

fun {Buffer1 In N}
 End={List.drop In N}

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

Traversing the In stream, forces the producer to emit N elements
The buffer II

fun {Buffer2 In N}
 End = thread
 {List.drop In N}
 end
fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

Traversing the In stream, forces the producer to emit N elements and at the same time serves the consumer
The buffer III

fun {Buffer3 In N}
 End = thread
 {List.drop In N}
 end

fun lazy {Loop In End}
 E2 = thread End.2 end
 In.1|{Loop In.2 E2}
 end
in
 {Loop In End}
end

Traverse the In stream, forces the producer to emit N elements and at the same time serves the consumer, and requests the next element ahead.
Larger Example: The Sieve of Eratosthenes

- Produces prime numbers
- It takes a stream 2...N, peals off 2 from the rest of the stream
- Delivers the rest to the next sieve
fun lazy {Sieve Xs}
 X|Xr = Xs in
 X | {Sieve {LFilter
 Xr
 fun {$ Y} Y mod X \neq 0 end
 }}
end

fun {Primes} {Sieve {Ints 2}} end
Lazy Filter

For the Sieve program we need a lazy filter

```plaintext
fun lazy {LFFilter Xs F}
  case Xs
  of nil then nil
  [] X|Xr then
    if {F X} then X|{LFFilter Xr F} else {LFFilter Xr F} end
  end
end
```
Primes in Haskell

ints :: (Num a) => a -> [a]
ints n = n : ints (n+1)

sieve :: (Integral a) => [a] -> [a]
sieve (x:xr) = x : sieve (filter (\y -> (y `mod` x /= 0)) xr)

primes :: (Integral a) => [a]
primes = sieve (ints 2)

Functions in Haskell are lazy by default. You can use take 20 primes to get the first 20 elements of the list.
Define streams implicitly

- Ones = 1 | Ones
- Infinite stream of ones
Define streams implicitly

- $Xs = 1 \mid \{LMap Xs$

 \[
 \text{fun } \{X \} \ X + 1 \ \text{end}
 \]

- What is Xs?
The Hamming problem

- Generate the first \(N \) elements of stream of integers of the form: \(2^a \cdot 3^b \cdot 5^c \) with \(a, b, c \geq 0 \) (in ascending order)
The Hamming problem

- Generate the first N elements of stream of integers of the form: $2^a 3^b 5^c$ with $a, b, c \geq 0$ (in ascending order)
The Hamming problem

- Generate the first N elements of stream of integers of the form: $2^a \cdot 3^b \cdot 5^c$ with $a, b, c \geq 0$ (in ascending order)
Lazy File Reading

fun {ToList FO}
 fun lazy {LRead} L T in
 if \{File.readBlock FO L T\} then
 T = {LRead}
 else T = nil {File.close FO} end
 L
 end
 {LRead}
end

• This avoids reading the whole file in memory
List Comprehensions

• Abstraction provided in lazy functional languages that allows writing higher level set-like expressions
• In our context we produce lazy lists instead of sets
• The mathematical set expression
 – \{x*y \mid 1\leq x \leq 10, 1\leq y \leq x\}
• Equivalent List comprehension expression is
 – [X*Y \mid X = 1..10 ; Y = 1..X]
• Example:
 – [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10]
List Comprehensions

• The general form is

\[
[f(x,y, ...,z) | x \leftarrow \text{gen}(a_1,\ldots,a_n) ; \text{guard}(x,\ldots) \\
y \leftarrow \text{gen}(x, a_1,\ldots,a_n) ; \text{guard}(y,x,\ldots) \\
\ldots
]
\]

• No linguistic support in Mozart/Oz, but can be easily expressed
Example 1

• \(z = [x \# x \mid x \leftarrow \text{from}(1,10)] \)
• \(Z = \{\text{LMap} \ {\text{LFrom} \ 1 \ 10} \ \text{fun}\{\$ X\} \ X \# X \ \text{end}\} \)

• \(z = [x \# y \mid x \leftarrow \text{from}(1,10), \ y \leftarrow \text{from}(1,x)] \)
• \(Z = \{\text{LFlatten} \)
 \(\{\text{LMap} \ {\text{LFrom} \ 1 \ 10} \)
 \(\ \text{fun}\{\$ X\} \ \{\text{LMap} \ {\text{LFrom} \ 1 \ X} \)
 \(\ \text{fun} \ \{\$ Y\} \ X \# Y \ \text{end} \)
 \(\ \text{end} \)
 \(\ \text{end} \} \)

C. Varela; Adapted from S. Haridi and P. Van Roy
Example 2

• \(z = \{ x \# y \mid x \leftarrow \text{from}(1,10), \ y \leftarrow \text{from}(1,x), \ x+y \leq 10 \} \)

• \(Z = L\text{Filter} \)
 \[
 \{ L\text{Filter} \}
 \{ L\text{Flatten} \}
 \{ L\text{Map} \} \{ L\text{From} 1 10 \}
 \text{fun} \{ \$ X \} \{ L\text{Map} \} \{ L\text{From} 1 X \}
 \text{fun} \{ \$ Y \} X \# Y \text{ end}
 \}
 \}
 \}
 \text{fun} \{ \$ X \# Y \} X + Y \leq 10 \text{ end} \} \}
List Comprehensions in Haskell

\[\text{lc1} = [(x,y) \mid x \leftarrow [1..10], y \leftarrow [1..x]] \]

\[\text{lc2} = \text{filter } (\lambda (x,y) \rightarrow (x+y\leq 10)) \text{ lc1} \]

\[\text{lc3} = [(x,y) \mid x \leftarrow [1..10], y \leftarrow [1..10], x+y\leq 10] \]

Haskell provides syntactic support for list comprehensions. List comprehensions are implemented using a built-in list monad.
Quicksort using list comprehensions

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (h:t) = quicksort [x | x <- t, x < h] ++
 [h] ++
 quicksort [x | x <-t, x >= h]
Higher-order programming

- **Higher-order programming** = the set of programming techniques that are possible with procedure values (lexically-scoped closures)

- **Basic operations**
 - Procedural abstraction: creating procedure values with lexical scoping
 - Genericity: procedure values as arguments
 - Instantiation: procedure values as return values
 - Embedding: procedure values in data structures

- **Higher-order programming** is the foundation of component-based programming and object-oriented programming
Embedding

- Embedding is when procedure values are put in data structures.
- Embedding has many uses:
 - Modules: a module is a record that groups together a set of related operations.
 - Software components: a software component is a generic function that takes a set of modules as its arguments and returns a new module. It can be seen as specifying a module in terms of the modules it needs.
 - Delayed evaluation (also called explicit lazy evaluation): build just a small part of a data structure, with functions at the extremities that can be called to build more. The consumer can control explicitly how much of the data structure is built.
Explicit lazy evaluation

- Supply-driven evaluation. (e.g. The list is completely calculated independent of whether the elements are needed or not.)
- Demand-driven execution. (e.g. The consumer of the list structure asks for new list elements when they are needed.)
- Technique: a programmed trigger.
- How to do it with higher-order programming? The consumer has a function that it calls when it needs a new list element. The function call returns a pair: the list element and a new function. The new function is the new trigger: calling it returns the next data item and another new function. And so forth.
Explicit lazy functions

```
fun lazy {From N}
  N | {From N+1}
end

fun {From N}
  fun {$} N | {From N+1} end
end
```
Implementation of lazy execution

The following defines the syntax of a statement, \(\langle s \rangle \) denotes a statement

\[
\langle s \rangle ::= \text{skip} \quad \text{empty statement}
\]

\[
| \quad \text{...}
\]

\[
| \quad \text{thread} \langle s_1 \rangle \text{end} \quad \text{thread creation}
\]

\[
| \quad \{ \text{ByNeed} \ \text{fun} \{\$\} \langle e \rangle \text{end} \} \langle x \rangle \quad \text{by need statement}
\]

\[
\text{zero arity function}
\]

\[
\text{variable}
\]

C. Varela; Adapted from S. Haridi and P. Van Roy
A function value is created in the store (say f) the function f is associated with the variable x execution proceeds immediately to next statement
Implementation

some statement
{ByNeed fun{$} (e) end X,E }

stack

A function value is created in the store (say f) the function f is associated with the variable x execution proceeds immediately to next statement

f

store

x : f

C. Varela; Adapted from S. Haridi and P. Van Roy 40
Accessing the ByNeed variable

- \(X = \{\text{ByNeed fun}\{\$\} 111*111 \text{ end}\} \) (by thread T0)

- Access by some thread T1
 - if \(X > 1000 \) then \{Browse hello#X\} end

 or

 - \{Wait X\}
 - Causes \(X \) to be bound to 12321 (i.e. 111*111)
Implementation

Thread T1

1. X is needed
2. start a thread T2 to execute F (the function)
3. only T2 is allowed to bind X

Thread T2

1. Evaluate \(Y = \{F\}\)
2. Bind X the value \(Y\)
3. Terminate T2

4. Allow access on X
Lazy functions

\[
\text{fun lazy } \{\text{Ints } N\} \\
\quad N \mid \{\text{Ints } N+1\} \\
\text{end}
\]

\[
\text{fun } \{\text{Ints } N\} \\
\quad \text{fun } \{F\} N \mid \{\text{Ints } N+1\} \text{ end} \\
\text{in } \{\text{ByNeed } F\} \\
\text{end}
\]
Exercises

26. Write a lazy append list operation \texttt{LazyAppend}. Can you also write \texttt{LazyFoldL}? Why or why not?

27. CTM Exercise 4.11.10 (pg 341)

28. CTM Exercise 4.11.13 (pg 342)

29. CTM Exercise 4.11.17 (pg 342)

30. Solve exercise 29 (Hamming problem) in Haskell.