
C. Varela 1

Logic Programming
(CTM 12.3-12.5)
Constraint Programming:

Constraints and Computation Spaces

Carlos Varela
Rennselaer Polytechnic Institute

December 2, 2016

Generate and Test Example
•  We can use the relational computation model to generate

all digits:

fun {Digit}
 choice 0 [] 1 [] 2 [] 3 [] 4 [] 5 [] 6 [] 7 [] 8 [] 9 end
end
{Browse {Search.base.all Digit}}
% displays [0 1 2 3 4 5 6 7 8 9]

C. Varela 2

Finding palindromes
•  Find all four-digit palindromes that are products of two-

digit numbers:
fun {Palindrome}
 X in
 X = (10*{Digit}+{Digit})*(10*{Digit}+{Digit}) % generate
 (X>=1000) = true % test
 (X div 1000) mod 10 = (X div 1) mod 10 % test
 (X div 100) mod 10 = (X div 10) mod 10 % test
 X
end
{Browse {Search.base.all Palindrome}} % 118 solutions

C. Varela 3

Propagate and Search

•  The generate and test programming pattern can be very
inefficient (e.g., Palindrome program explores 10000
possibilities).

•  An alternative is to use a propagate and search technique.

Propagate and search filters possibilities during the generation
process, to prevent combinatorial explosion when possible.

C. Varela 4

Propagate and Search
Propagate and search approach is based on three key ideas:
•  Keep partial information, e.g., “in any solution, X is

greater than 100”.
•  Use local deduction, e.g., combining “X is less than Y”

and “X is greater than 100”, we can deduce “Y is greater
than 101” (assuming Y is an integer.)

•  Do controlled search. When no more deductions can be
done, then search. Divide original CSP problem P into two
new problems: (P ^ C) and (P ^ ¬C) and where C is a new
constraint. The solution to P is the union of the two new
sub-problems. Choice of C can significantly affect search
space.

C. Varela 5

Propagate and Search Example
•  Find two digits that add to 10, multiply to more than 24:
D1::0#9 D2::0#9 % initial constraints
{Browse D1} {Browse D2} % partial results
D1+D2 =: 10 % reduces search space from 100 to 81 possibilities

 % D1 and D2 cannot be 0.
D1*D2 >=: 24 % reduces search space to 9 possibilities
 % D1 and D2 must be between 4 and 6.
D1 <: D2 % reduces search space to 4 possibilities

 % D1 must be 4 or 5 and D2 must be 5 or 6.
 % It does not find unique solution D1=4 and D2=6

C. Varela 6

Propagate and Search Example(2)
•  Find a rectangle whose perimeter is 20, whose area is

greater than or equal to 24, and width less than height:
fun {Rectangle}
 W H in W::0#9 H::0#9
 W+H =: 10
 W*H >=: 24
 W <: H
 {FD.distribute naive rect(W H)}
 rect(W H)
end
{Browse {Search.base.all Rectangle}}
% displays [rect(4 6)]

C. Varela 7

C. Varela 8

Constraint-based Computation
Model

•  Constraints are of two kinds:
–  Basic constraints: represented directly in the single-assignment

store. For example, X in {0..9}.
–  Propagators: constraints represented as threads that use local

deduction to propagate information across partial values by adding
new basic constraints. For example, X+Y =: 10.

•  A computation space encapsulates basic constraints and
propagators. Spaces can be nested, to support distribution
and search strategies.
–  Distribution strategies determine how to create new computation

spaces, e.g., a subspace assuming X = 4 and another with X \= 4.
–  Search strategies determine in which order to consider subspaces,

e.g., depth-first search or breadth-first search.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 9

Partial Values (Review)

•  Is a data structure that may contain
unbound variables

•  The store contains the partial
value: person(name: “George” age: x2)

•  declare Y X
X = person(name: “George” age: Y)

•  The identifier ’Y’ refers to x2

person

“George” Unbound

name age

The Store

“X”

“Y”

x1

x2

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 10

Partial Values (2)

Partial Values may be complete
•  declare Y X

X = person(name: “George” age: Y)
•  Y = 25

person

“George” 25

name age

The Store

“X”

“Y”

x1

x2

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 11

Variables and partial values

•  Declarative variable:
–  is an entity that resides in a single-assignment store, that is initially

unbound, and can be bound to exactly one (partial) value
–  it can be bound to several (partial) values as long as they are

compatible with each other

•  Partial value:
–  is a data-structure that may contain unbound variables
–  When one of the variables is bound, it is replaced by the (partial)

value it is bound to
–  A complete value, or value for short is a data-structure that does

not contain any unbound variables

C. Varela 12

Constraint-based computation
model

Constraint 1
u+v =: 10

Constraint N
u <: v

Propagators
 (threads)

u = {0#9}
v = {0#9}
x
z = person(a:y)
y = α1
s = ChildSpace
…

α1: x
…

Constraint store Mutable store

Computation
Space

Basic constraints

C. Varela 13

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {0#9}
h = {0#9}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 1: w+h =: 10 à w cannot be 0; h cannot be 0.

C. Varela 14

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {1#9}
h = {1#9}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 2: w*h >=: 24 à w or h cannot be 1 or 2.

C. Varela 15

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {3#9}
h = {3#9}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 3: w <: h à w cannot be 9, h cannot be 3.

C. Varela 16

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {3#8}
h = {4#9}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 1 again: w + h =: 10 à
w >= 3 implies h cannot be 8 or 9,
h >= 4 implies w cannot be 7 or 8.

C. Varela 17

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {3#6}
h = {4#7}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 2 again: w * h >=: 24 à
h <= 7 implies w cannot be 3.

C. Varela 18

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {4#6}
h = {4#7}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 3 again: w <: h à h cannot be 4.

C. Varela 19

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {4#6}
h = {5#7}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 1 once more: w + h =: 10 à h cannot be 7.

C. Varela 20

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {4#6}
h = {5#6}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

Let us consider propagator 3 once more: w <: h à w cannot be 6.

C. Varela 21

Constraint propagation:
Rectangle example

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {4#5}
h = {5#6}
Sol = rect(w h)

Constraint store Mutable store

Top-level
Computation

Space

Basic constraints

Constraint 2
w*h >=: 24

We have reached a stable computation space state: no single propagator
can add more information to the constraint store.

Search
Once we reach a stable computation space (no local
deductions can be made by individual propagators), we need
to do search to make progress.
Divide original problem P into two new problems: (P ^ C) and
(P ^ ¬C) and where C is a new constraint. The solution to P is
the union of the solutions to the two new sub-problems.
In our Rectangle example, we divide the computation space S
into two new sub-spaces S1 and S2 with new (respective)
constraints:

 w =: 4
 w \=: 4

C. Varela 22

C. Varela 23

Computation Space Search:
Rectangle example with w=4

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {4#5}
h = {5#6}
Sol = rect(w h)

Constraint store Mutable store

S1
Computation
Sub-Space

Basic constraints

Constraint 2
w*h >=: 24

Constraint 4 implies that w = 4.

Constraint 4
w =: 4

C. Varela 24

Computation Space Search:
Rectangle example with w=4

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = 4
h = {5#6}
Sol = rect(w h)

Constraint store Mutable store

S1
Computation
Sub-Space

Basic constraints

Constraint 2
w*h >=: 24

Constraint 1 or 2 implies that h = 6.

Constraint 4
w =: 4

C. Varela 25

Computation Space Search:
Rectangle example with w=4

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = 4
h = 6
Sol = rect(w h)

Constraint store Mutable store

S1
Computation
Sub-Space

Basic constraints

Constraint 2
w*h >=: 24

Since all the propagators are entailed by the store, their threads can
terminate.

Constraint 4
w =: 4

C. Varela 26

Computation Space Search:
Rectangle example with w=4

w = 4
h = 6
Sol = rect(w h)

Constraint store Mutable store

S1
Computation
Sub-Space

Basic constraints

This is the final value store. A solution has been found.
The sub-space can now be merged with its parent computation space.

C. Varela 27

Computation Space Search:
Rectangle example with w\=4

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = {4#5}
h = {5#6}
Sol = rect(w h)

Constraint store Mutable store

S2
Computation
Sub-Space

Basic constraints

Constraint 2
w*h >=: 24

Constraint 4 implies that w = 5.

Constraint 4
w \=: 4

C. Varela 28

Computation Space Search:
Rectangle example with w\=4

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = 5
h = {5#6}
Sol = rect(w h)

Constraint store Mutable store

S2
Computation
Sub-Space

Basic constraints

Constraint 2
w*h >=: 24

Constraint 1, w+h =: 10 à h = 5.

Constraint 4
w \=: 4

C. Varela 29

Computation Space Search:
Rectangle example with w\=4

Constraint 1
w+h =: 10

Constraint 3
w <: h

Propagators (threads)

w = 5
h = 5
Sol = rect(w h)

Constraint store Mutable store

S2
Computation
Sub-Space

Basic constraints

Constraint 2
w*h >=: 24

Constraint 3, w <: h, cannot be satisfied: computation sub-space S2 fails.

Constraint 4
w \=: 4

Finding palindromes (revisited)
•  Find all four-digit palindromes that are products of two-

digit numbers:
fun {Palindrome}
 A B C X Y in
 A::1000#9999 B::0#99 C::0#99
 A =: B*C
 X::1#9 Y::0#9
 A =: X*1000+Y*100+Y*10+X
 {FD.distribute ff [X Y]}
 A
end
{Browse {Search.base.all Palindrome}} % 36 solutions

C. Varela 30

Computation spaces for
Palindrome with Explorer

C. Varela 31

•  At top-level,
we have
X=1, X\=1.

•  Green
diamonds
correspond
to successful
sub-spaces.

•  Red squares
correspond
to failed
sub-spaces.

Programming Search with
Computation Spaces

•  The search strategy specifies the order to consider nodes
in the search tree, e.g., depth-first search.

•  The distribution strategy specifies the shape and content of
the tree, i.e., how many alternatives exist at a node and
what constraints are added for each alternative.

•  They can be independent of each other. Distribution
strategy is decided within the computation space. Search
strategy is decided outside the computation space.

C. Varela 32

Programming Search with
Computation Spaces

•  Create the space with program (variables and constraints).
•  Program runs in space: variables and propagators are

created. Space executes until it reaches stability.
•  Computation can create a choice point. Distribution

strategy decides what constraint to add for each alternative.
Computation inside space is suspended.

•  Outside the space, if no choice point has been created,
execution stops and returns a solution. Otherwise, search
strategy decides what alternative to consider next and
commits to that.

C. Varela 33

Primitive Operations for
Computation Spaces

C. Varela 34

〈statement〉 ::= {NewSpace 〈x〉 〈y〉}

 | {WaitStable}
 | {Choose 〈x〉 〈y〉}
 | {Ask 〈x〉 〈y〉}
 | {Commit 〈x〉 〈y〉}
 | {Clone 〈x〉 〈y〉}
 | {Inject 〈x〉 〈y〉}
 | {Merge 〈x〉 〈y〉}

Depth-first single-solution search

fun {DFE S}
 case {Ask S}
 of failed then nil
 [] succeeded then [S]
 [] alternatives(2) then C={Clone S} in
 {Commit S 1}
 case {DFE S} of nil then {Commit C 2} {DFE C}
 [] [T] then [T]
 end
 end
end

C. Varela 35

% Given {Script Sol}, returns
solution [Sol] or nil:
fun {DFS Script}
 case {DFE {NewSpace Script}}
 of nil then nil
 [] [S] then [{Merge S}]
 end
end

C. Varela 36

Relational computation model (Oz)

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

 | 〈x〉 = 〈v〉 variable-value binding
 | 〈s1〉 〈s2〉 sequential composition
 | local 〈x〉 in 〈s1〉 end declaration
 | proc {〈x〉 〈y1〉 … 〈yn〉 } 〈s1〉 end procedure introduction
 | if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
 | { 〈x〉 〈y1〉 … 〈yn〉 } procedure application
 | case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching
 | choice 〈s1〉 [] … [] 〈sn〉 end choice
 | fail failure

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela 37

Relational Computation Model

•  Declarative model (purely functional) is extended with
relations.

•  The choice statement groups a set of alternatives.
–  Execution of choice statement chooses one alternative.
–  Semantics is to rollback and try other alternatives if a failure is

subsequently encountered.
•  The fail statement indicates that the current alternative is

wrong.
–  A fail is implicit upon trying to bind incompatible values, e.g.,

3=4. This is in contrast to raising an exception (as in the
declarative model).

C. Varela 38

Search tree and procedure

•  The search tree is produced by creating a new branch at
each choice point.

•  When fail is executed, execution « backs up » or
backtracks to the most recent choice statement, which
picks the next alternative (left to right).

•  Each path in the tree can correspond to no solution
(« fail »), or to a solution (« succeed »).

•  A search procedure returns a lazy list of all solutions,
ordered according to a depth-first search strategy.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 39

Rainy/Snowy Example
fun {Rainy}

 choice
 seattle [] rochester
 end

end

fun {Cold}

 rochester
end

proc {Snowy X}

 {Rainy X}
 {Cold X}

end

% display all
{Browse

 {Search.base.all
 proc {$ C} {Rainy C} end}}

{Browse {Search.base.all Snowy}}

% new search engine
E = {New Search.object script(Rainy)}

% calculate and display one at a time
{Browse {E next($)}}

Implementing the Relational
Computation Model

choice 〈s1〉 [] … [] 〈sn〉 end

is a linguistic abstraction translated to:
case {Choose N}
of 1 then 〈s1〉
[] 2 then 〈s2〉
…
[] N then 〈sn〉
end

•  Solve (Figure 12.6)

C. Varela 40

Implementing the Relational
Computation Model

C. Varela 41

% Returns the list of solutions of Script given by a
lazy depth-first exploration

fun {Solve Script}
 {SolveStep {Space.new Script} nil}
end

% Returns the list of solutions of S appended with

SolTail
fun {SolveStep S SolTail}
 case {Space.ask S}
 of failed then SolTail
 [] succeeded then {Space.merge S}|SolTail
 [] alternatives(N) then {SolveLoop S 1 N SolTail}
 end
end

% Lazily explores the alternatives I through
N of space S, and returns the list of
solutions found, appended with SolTail

fun lazy {SolveLoop S I N SolTail}
 if I>N then
 SolTail
 elseif I==N then
 {Space.commit S I}
 {SolveStep S SolTail}
 else
 C={Space.clone S}
 NewTail={SolveLoop S I+1 N SolTail}
 in
 {Space.commit C I}
 {SolveStep C NewTail}
 end
end

C. Varela 42

Exercises

97. Try different orders of execution for propagator threads.

Do they always end up in the same constraint store? Why
or why not?

98. CTM Exercise 12.6.1 (pg 774).
99. CTM Exercise 12.6.3 (pg 775).

