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Generate and Test Example 
•  We can use the relational computation model to generate 

all digits:  
 
fun {Digit} 
   choice 0 [] 1 [] 2 [] 3 [] 4 [] 5 [] 6 [] 7 [] 8 [] 9 end 
end 
{Browse {Search.base.all Digit}} 
% displays [0 1 2 3 4 5 6 7 8 9] 
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Finding palindromes 
•  Find all four-digit palindromes that are products of two-

digit numbers: 
fun {Palindrome} 
   X in 
   X = (10*{Digit}+{Digit})*(10*{Digit}+{Digit})   % generate 
   (X>=1000) = true                                       % test 
   (X div 1000) mod 10 = (X div 1) mod 10    % test 
   (X div 100) mod 10 = (X div 10) mod 10   % test 
   X 
end 
{Browse {Search.base.all Palindrome}}    % 118 solutions 
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Propagate and Search 

•  The generate and test programming pattern can be very 
inefficient (e.g., Palindrome program explores 10000 
possibilities). 

•  An alternative is to use a propagate and search technique. 

Propagate and search filters possibilities during the generation 
process, to prevent combinatorial explosion when possible. 
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Propagate and Search 
Propagate and search approach is based on three key ideas: 
•  Keep partial information, e.g., “in any solution, X is 

greater than 100”. 
•  Use local deduction, e.g., combining “X is less than Y” 

and “X is greater than 100”, we can deduce “Y is greater 
than 101” (assuming Y is an integer.) 

•  Do controlled search.  When no more deductions can be 
done, then search.  Divide original CSP problem P into two 
new problems:  (P ^ C) and (P ^ ¬C) and where C is a new 
constraint.  The solution to P is the union of the two new 
sub-problems.   Choice of C can significantly affect search 
space. 
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Propagate and Search Example 
•  Find two digits that add to 10, multiply to more than 24:  
D1::0#9  D2::0#9   % initial constraints 
{Browse D1}  {Browse D2}   % partial results 
D1+D2 =: 10  % reduces search space from 100 to 81 possibilities 

          % D1 and D2 cannot be 0. 
D1*D2 >=: 24   % reduces search space to 9 possibilities 
                       % D1 and D2 must be between 4 and 6. 
D1 <: D2         % reduces search space to 4 possibilities 

           % D1 must be 4 or 5 and D2 must be 5 or 6. 
           % It does not find unique solution D1=4 and D2=6 
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Propagate and Search Example(2) 
•  Find a rectangle whose perimeter is 20, whose area is 

greater than or equal to 24, and width less than height: 
fun {Rectangle} 
   W H in W::0#9   H::0#9 
   W+H =: 10 
   W*H >=: 24 
   W <: H 
   {FD.distribute naive rect(W H)} 
   rect(W H) 
end 
{Browse {Search.base.all Rectangle}} 
% displays [rect(4 6)] 
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Constraint-based Computation 
Model 

•  Constraints are of two kinds: 
–  Basic constraints:  represented directly in the single-assignment 

store.  For example, X in {0..9}. 
–  Propagators:  constraints represented as threads that use local 

deduction to propagate information across partial values by adding 
new basic constraints.  For example, X+Y =: 10. 

•  A computation space encapsulates basic constraints and 
propagators.  Spaces can be nested, to support distribution 
and search strategies. 
–  Distribution strategies determine how to create new computation 

spaces, e.g., a subspace assuming X = 4 and another with X \= 4. 
–  Search strategies determine in which order to consider subspaces, 

e.g., depth-first search or breadth-first search. 
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Partial Values (Review)  

•  Is a data structure that may contain 
unbound variables 

•  The store contains the partial 
value: person(name: “George” age: x2) 

•  declare Y X 
X = person(name: “George” age: Y) 

•  The identifier ’Y’ refers to x2 

person 

“George” Unbound 

name age 

The Store 

“X” 

“Y” 

x1 

x2 
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Partial Values (2)  

Partial Values may be complete 
•  declare Y X 

X = person(name: “George” age: Y) 
•  Y = 25 

person 

“George” 25 

name age 

The Store 

“X” 

“Y” 

x1 

x2 
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Variables and partial values 

•  Declarative variable: 
–  is an entity that resides in a single-assignment store, that is initially 

unbound, and can be bound to exactly one (partial) value 
–  it can be bound to several (partial) values as long as they are 

compatible with each other 

•  Partial value: 
–  is a data-structure that may contain unbound variables 
–  When one of the variables is bound, it is replaced by the (partial) 

value it is bound to 
–  A complete value, or value for short is a data-structure that does 

not contain any unbound variables 
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Constraint-based computation 
model 

Constraint 1 
u+v =: 10 

Constraint N 
u <: v 

Propagators 
 (threads) 

u = {0#9} 
v = {0#9} 
x 
z = person(a:y) 
y = α1 
s = ChildSpace 
… 

α1: x 
… 
 

Constraint store Mutable store 

Computation 
Space 

Basic constraints 



C. Varela 13 

Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {0#9} 
h = {0#9} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 1:  w+h =: 10 à w cannot be 0; h cannot be 0. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {1#9} 
h = {1#9} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 2:  w*h >=: 24 à w or h cannot be 1 or 2. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {3#9} 
h = {3#9} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 3:  w <: h à w cannot be 9, h cannot be 3. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {3#8} 
h = {4#9} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 1 again:  w + h =: 10 à  
w >= 3 implies h cannot be 8 or 9,  
h >= 4 implies w cannot be 7 or 8. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {3#6} 
h = {4#7} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 2 again:  w * h >=: 24 à  
h <= 7 implies w cannot be 3. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {4#6} 
h = {4#7} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 3 again:  w <: h à h cannot be 4. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {4#6} 
h = {5#7} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 1 once more:  w + h =: 10 à h cannot be 7. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {4#6} 
h = {5#6} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Let us consider propagator 3 once more:  w <: h à w cannot be 6. 
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Constraint propagation:  
Rectangle example 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {4#5} 
h = {5#6} 
Sol = rect(w h) 

Constraint store Mutable store 

Top-level 
Computation 

Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

We have reached a stable computation space state:  no single propagator 
can add more information to the constraint store. 



Search 
Once we reach a stable computation space (no local 
deductions can be made by individual propagators), we need 
to do search to make progress. 
Divide original problem P into two new problems:  (P ^ C) and 
(P ^ ¬C) and where C is a new constraint.  The solution to P is 
the union of the solutions to the two new sub-problems. 
In our Rectangle example, we divide the computation space S 
into two new sub-spaces S1 and S2 with new (respective) 
constraints: 

 w =: 4 
 w \=: 4 

 
C. Varela 22 



C. Varela 23 

Computation Space Search: 
Rectangle example with w=4 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {4#5} 
h = {5#6} 
Sol = rect(w h) 

Constraint store Mutable store 

S1 
Computation 
Sub-Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Constraint 4 implies that w = 4. 

Constraint 4 
w =: 4 
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Computation Space Search: 
Rectangle example with w=4 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = 4 
h = {5#6} 
Sol = rect(w h) 

Constraint store Mutable store 

S1 
Computation 
Sub-Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Constraint 1 or 2 implies that h = 6. 

Constraint 4 
w =: 4 
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Computation Space Search: 
Rectangle example with w=4 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = 4 
h = 6 
Sol = rect(w h) 

Constraint store Mutable store 

S1 
Computation 
Sub-Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Since all the propagators are entailed by the store, their threads can 
terminate. 

Constraint 4 
w =: 4 
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Computation Space Search: 
Rectangle example with w=4 

w = 4 
h = 6 
Sol = rect(w h) 

Constraint store Mutable store 

S1 
Computation 
Sub-Space 

Basic constraints 

This is the final value store.  A solution has been found.   
The sub-space can now be merged with its parent computation space. 
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Computation Space Search: 
Rectangle example with w\=4 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = {4#5} 
h = {5#6} 
Sol = rect(w h) 

Constraint store Mutable store 

S2 
Computation 
Sub-Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Constraint 4 implies that w = 5. 

Constraint 4 
w \=: 4 
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Computation Space Search: 
Rectangle example with w\=4 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = 5 
h = {5#6} 
Sol = rect(w h) 

Constraint store Mutable store 

S2 
Computation 
Sub-Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Constraint 1, w+h =: 10 à h = 5. 

Constraint 4 
w \=: 4 
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Computation Space Search: 
Rectangle example with w\=4 

Constraint 1 
w+h =: 10 

Constraint 3 
w <: h 

Propagators (threads) 

w = 5 
h = 5 
Sol = rect(w h) 

Constraint store Mutable store 

S2 
Computation 
Sub-Space 

Basic constraints 

Constraint 2 
w*h >=: 24 

Constraint 3, w <: h, cannot be satisfied:  computation sub-space S2 fails.  

Constraint 4 
w \=: 4 



Finding palindromes (revisited) 
•  Find all four-digit palindromes that are products of two-

digit numbers: 
fun {Palindrome} 
   A B C X Y in 
   A::1000#9999   B::0#99 C::0#99 
   A =: B*C 
   X::1#9   Y::0#9 
   A =: X*1000+Y*100+Y*10+X 
   {FD.distribute ff [X Y]} 
   A 
end 
{Browse {Search.base.all Palindrome}}   % 36 solutions 
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Computation spaces for 
Palindrome with Explorer 
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•  At top-level, 
we have 
X=1, X\=1. 

•  Green 
diamonds 
correspond 
to successful 
sub-spaces. 

•  Red squares 
correspond 
to failed 
sub-spaces. 



Programming Search with 
Computation Spaces 

•  The search strategy specifies the order to consider nodes 
in the search tree, e.g., depth-first search.   

•  The distribution strategy specifies the shape and content of 
the tree, i.e., how many alternatives exist at a node and 
what constraints are added for each alternative. 

•  They can be independent of each other.  Distribution 
strategy is decided within the computation space.  Search 
strategy is decided outside the computation space. 
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Programming Search with 
Computation Spaces 

 
•  Create the space with program (variables and constraints). 
•  Program runs in space:  variables and propagators are 

created.  Space executes until it reaches stability. 
•  Computation can create a choice point.  Distribution 

strategy decides what constraint to add for each alternative.  
Computation inside space is suspended. 

•  Outside the space, if no choice point has been created, 
execution stops and returns a solution.  Otherwise, search 
strategy decides what alternative to consider next and 
commits to that. 
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Primitive Operations for 
Computation Spaces 
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〈statement〉  ::=  {NewSpace 〈x〉 〈y〉} 

  |  {WaitStable} 
   |  {Choose 〈x〉 〈y〉} 
   |  {Ask 〈x〉 〈y〉} 
   |  {Commit 〈x〉 〈y〉} 
   |  {Clone 〈x〉 〈y〉} 
   |  {Inject 〈x〉 〈y〉} 
   |  {Merge 〈x〉 〈y〉} 



Depth-first single-solution search 
 
fun {DFE S} 
   case {Ask S} 
   of failed then nil 
   [] succeeded then [S] 
   [] alternatives(2) then C={Clone S} in 
      {Commit S 1} 
      case {DFE S} of nil then {Commit C 2} {DFE C} 
      [] [T] then [T] 
      end 
   end 
end 
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% Given {Script Sol}, returns 
solution [Sol] or nil: 
fun {DFS Script} 
   case {DFE {NewSpace Script}} 
   of nil then nil 
   [] [S] then [{Merge S}] 
   end 
end 
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Relational computation model (Oz) 

〈s〉  ::=  skip                                                  empty statement 
      |   〈x〉 = 〈y〉                                          variable-variable binding                                                          

 |   〈x〉 = 〈v〉          variable-value binding                                                        
 |   〈s1〉 〈s2〉          sequential composition 
 |  local 〈x〉 in 〈s1〉 end        declaration 
 |  proc {〈x〉 〈y1〉 … 〈yn〉 }  〈s1〉 end     procedure introduction 
 |  if 〈x〉 then 〈s1〉 else 〈s2〉 end      conditional 
 |  { 〈x〉 〈y1〉 … 〈yn〉 }        procedure application 
 |  case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end   pattern matching 
 |  choice 〈s1〉 [] … [] 〈sn〉 end      choice 
 |  fail            failure 

The following defines the syntax of a statement, 〈s〉 denotes a statement  
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Relational Computation Model 

•  Declarative model (purely functional) is extended with 
relations.   

•  The choice statement groups a set of alternatives.  
–  Execution of choice statement chooses one alternative.   
–  Semantics is to rollback and try other alternatives if a failure is 

subsequently encountered. 
•  The fail statement indicates that the current alternative is 

wrong. 
–  A fail is implicit upon trying to bind incompatible values, e.g., 

3=4.  This is in contrast to raising an exception (as in the 
declarative model). 
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Search tree and procedure 

•  The search tree is produced by creating a new branch at 
each choice point.   

•  When fail is executed, execution « backs up » or 
backtracks to the most recent choice statement, which 
picks the next alternative (left to right). 

•  Each path in the tree can correspond to no solution 
(« fail »), or to a solution (« succeed »). 

•  A search procedure returns a lazy list of all solutions, 
ordered according to a depth-first search strategy. 
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Rainy/Snowy Example 
fun {Rainy}  

 choice 
    seattle [] rochester  
 end  

end 
 
fun {Cold}  

 rochester 
end 
 
proc {Snowy X} 

 {Rainy X} 
 {Cold X} 

end 
    

% display all 
{Browse  

 {Search.base.all  
  proc {$ C} {Rainy C} end}} 

{Browse {Search.base.all Snowy}} 
 
% new search engine 
E = {New Search.object script(Rainy)} 
 
% calculate and display one at a time 
{Browse {E next($)}} 
 



Implementing the Relational 
Computation Model 

 
choice 〈s1〉 [] … [] 〈sn〉 end       
 
is a linguistic abstraction translated to: 
case {Choose N}  
of 1 then 〈s1〉  
[] 2 then 〈s2〉 
… 
[] N then 〈sn〉 
end       
 
 
•  Solve (Figure 12.6) 
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Implementing the Relational 
Computation Model 
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% Returns the list of solutions of Script given by a 
lazy depth-first exploration 

fun {Solve Script} 
   {SolveStep {Space.new Script} nil} 
end 
 
% Returns the list of solutions of S appended with 

SolTail 
fun {SolveStep S SolTail} 
   case {Space.ask S} 
   of failed              then SolTail 
   [] succeeded       then {Space.merge S}|SolTail 
   [] alternatives(N) then {SolveLoop S 1 N SolTail} 
   end 
end 

% Lazily explores the alternatives I through 
N of space S, and returns the list of 
solutions found, appended with SolTail 

fun lazy {SolveLoop S I N SolTail} 
   if I>N then 
      SolTail 
   elseif I==N then 
      {Space.commit S I} 
      {SolveStep S SolTail} 
   else 
      C={Space.clone S} 
      NewTail={SolveLoop S I+1 N SolTail} 
   in 
      {Space.commit C I} 
      {SolveStep C NewTail} 
   end 
end 
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Exercises 
 
97. Try different orders of execution for propagator threads.  

Do they always end up in the same constraint store?  Why 
or why not? 

98. CTM Exercise 12.6.1 (pg 774). 
99. CTM Exercise 12.6.3 (pg 775). 

 


