
C. Varela 1

Programming Languages
(CSCI 4430/6430)

History, Syntax, Semantics, Essentials, Paradigms

Carlos Varela
Rennselaer Polytechnic Institute

August 30, 2016

C. Varela 2

The first programmer ever

Ada Augusta, the Countess of Lovelace, the daughter of the poet Lord Byron

Circa 1843

Using Babbage’s Analytical Engine

C. Varela 3

The first “high-level” (compiled)
programming language

FORTRAN

1954

Backus at IBM

It was called “an automatic coding system”, not a “programming language”

Used for numerical computing

C. Varela 4

The first functional programming
language

Lisp

1958

McCarthy at Stanford

For LISts Processing---lists represent both code and data

Used for symbolic manipulation

C. Varela 5

The first object oriented
programming language

Simula

1962

Dahl and Nygaard at University of Oslo, Norway

Used for computer simulations

C. Varela 6

The first logic programming
language

Prolog

1972

Roussel and Colmerauer at Marseilles University, France

For “PROgrammation en LOGique”.

Used for natural language processing and automated theorem proving

C. Varela 7

The first concurrent
programming language

Concurrent Pascal

1974

Hansen at Caltech

Used for operating systems development

C. Varela 8

The first concurrent actor
programming language

PLASMA

1975

Hewitt at MIT

Used for artificial intelligence (planning)

C. Varela 9

The first scripting language

REXX

1982

Cowlishaw at IBM

Only one data type: character strings

Used for “macro” programming and prototyping

C. Varela 10

The first multi-paradigm
programming language

Oz

1995

Smolka at Saarland University, Germany

A logic, functional, imperative, object-oriented, constraint,
concurrent, and distributed programming language

Used for teaching programming and programming language research

C. Varela 11

Other programming languages

Algol (Naur 1958)
Cobol (Hopper 1959)

BASIC (Kennedy and Kurtz 1964)
Pascal (Wirth 1970)

C (Kernighan and Ritchie 1971)
Ada (Whitaker 1979)

Smalltalk (Kay 1980)
C++ (Stroustrop 1980)

Eiffel (Meyer 1985)
Java (Gosling 1994)
C# (Hejlsberg 2000)

Act (Lieberman 1981)
ABCL (Yonezawa 1988)

Actalk (Briot 1989)
Erlang (Armstrong 1990)

E (Miller et al 1998)
SALSA (Varela and Agha 1999)

ML (Milner 1973)
Scheme (Sussman and Steele 1975)

Haskell (Hughes et al 1987)

Python (van Rossum 1985)
Perl (Wall 1987)

Tcl (Ousterhout 1988)
Lua (Ierusalimschy et al 1994)

JavaScript (Eich 1995)
PHP (Lerdorf 1995)

Ruby (Matsumoto 1995)

Imperative

Object-Oriented
Actor-Oriented

Functional

Scripting

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Declarative Computation Model
Defining practical programming languages (CTM 2.1)

Carlos Varela
RPI

August 30, 2016

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Programming Concepts
•  A computation model: describes a language and how the

sentences (expressions, statements) of the language are
executed by an abstract machine

•  A set of programming techniques: to express solutions to
the problems you want to solve

•  A set of reasoning techniques: to reason about programs to
increase the confidence that they behave correctly and to
calculate their efficiency

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Declarative Programming Model
•  Guarantees that the computations are evaluating functions

on (partial) data structures
•  The core of functional programming (LISP, Scheme, ML,

Haskell)
•  The core of logic programming (Prolog, Mercury)
•  Stateless programming vs. stateful (imperative)

programming
•  We will see how declarative programming underlies

concurrent and object-oriented programming (Erlang, C++,
Java, SALSA)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Defining a programming language

•  Syntax (grammar)
•  Semantics (meaning)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Language syntax
•  Defines what are the legal programs, i.e. programs that can

be executed by a machine (interpreter)
•  Syntax is defined by grammar rules
•  A grammar defines how to make ‘sentences’ out of
‘words’

•  For programming languages: sentences are called
statements (commands, expressions)

•  For programming languages: words are called tokens
•  Grammar rules are used to describe both tokens and

statements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Language Semantics
•  Semantics defines what a program does when it executes
•  Semantics should be simple and yet allows reasoning about

programs (correctness, execution time, and memory use)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Approaches to semantics

Programming Language

Kernel Language

Operational model

Formal calculus Abstract machine

Aid the programmer
in reasoning and
understanding

Mathematical study of
programming (languages)
λ-calculus, predicate calculus,
π-calculus

Aid to the implementer
Efficient execution on
a real machine

C. Varela 19

Programming Paradigms
•  We will cover theoretical and practical aspects of three

different programming paradigms:
Paradigm Theory Languages
Functional
Programming

Lambda Calculus Oz
Haskell

Concurrent
Programming

Actor Model SALSA
Erlang

Logic Programming First-Order Logic
Horn Clauses

Prolog
Oz

•  Each paradigm will be evaluated with a Programming Assignment (PA)
and an Exam.

•  Two highest PA grades count for 40% of total grade. Lowest PA grade
counts for 10% of the total grade. Two highest Exam grades count for 40%
of total grade. Lowest Exam grade counts for 10% of the total grade.

C. Varela 20

Lambda Calculus (PDCS 2)
alpha-renaming, beta reduction, applicative and

normal evaluation orders, Church-Rosser theorem,
combinators

Carlos Varela
Rennselaer Polytechnic Institute

August 30, 2016

C. Varela 21

Mathematical Functions
Take the mathematical function:

f(x) = x2

f is a function that maps integers to integers:

f: Z → Z

We apply the function f to numbers in its domain to obtain a number
in its range, e.g.:

f(-2) = 4

Function

Domain Range

C. Varela 22

Function Composition
Given the mathematical functions:

f(x) = x2 , g(x) = x+1

f •g is the composition of f and g:

f •g (x) = f(g(x))

 f • g (x) = f(g(x)) = f(x+1) = (x+1)2 = x2 + 2x + 1
 g • f (x) = g(f(x)) = g(x2) = x2 + 1

Function composition is therefore not commutative. Function
composition can be regarded as a (higher-order) function with the
following type:

 • : (Z → Z) x (Z → Z) → (Z → Z)

C. Varela 23

Lambda Calculus (Church and Kleene
1930’s)

A unified language to manipulate and reason about functions.

Given
f(x) = x2

λx. x2

represents the same f function, except it is anonymous.

To represent the function evaluation f(2) = 4,
we use the following λ-calculus syntax:

(λx. x2 2) ⇒ 22 ⇒ 4

C. Varela 24

Lambda Calculus Syntax and Semantics

The syntax of a λ-calculus expression is as follows:

 e ::= v variable
 | λv.e functional abstraction
 | (e e) function application

The semantics of a λ-calculus expression is called beta-reduction:

(λx.E M) ⇒ E{M/x}

where we alpha-rename the lambda abstraction E if necessary to
avoid capturing free variables in M.

C. Varela 25

Currying

The lambda calculus can only represent functions of one variable.
It turns out that one-variable functions are sufficient to represent
multiple-variable functions, using a strategy called currying.

E.g., given the mathematical function: h(x,y) = x+y
of type h: Z x Z→ Z

We can represent h as h’ of type: h’: Z→ Z→ Z
Such that

 h(x,y) = h’(x)(y) = x+y
For example,

 h’(2) = g, where g(y) = 2+y

We say that h’ is the curried version of h.

C. Varela 26

Function Composition in Lambda Calculus

S: λx.(s x) (Square)

I: λx.(i x) (Increment)

C: λf.λg.λx.(f (g x)) (Function Composition)

((C S) I)

((λf.λg.λx.(f (g x)) λx.(s x)) λx.(i x))
⇒ (λg.λx.(λx.(s x) (g x)) λx.(i x))

⇒ λx.(λx.(s x) (λx.(i x) x))
⇒ λx.(λx.(s x) (i x))

⇒ λx.(s (i x))

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

C. Varela 27

Free and Bound Variables

The lambda functional abstraction is the only syntactic construct
that binds variables. That is, in an expression of the form:

λv.e

we say that free occurrences of variable v in expression e are bound.
All other variable occurrences are said to be free.

E.g.,

(λx.λy.(x y) (y w))

Free VariablesBound Variables

C. Varela 28

α-renaming

Alpha renaming is used to prevent capturing free occurrences of
variables when reducing a lambda calculus expression, e.g.,

(λx.λy.(x y) (y w))
⇒ λy.((y w) y)

This reduction erroneously captures the free occurrence of y.

A correct reduction first renames y to z, (or any other fresh variable)
e.g.,

(λx.λy.(x y) (y w))
⇒ (λx.λz.(x z) (y w))

⇒ λz.((y w) z)

where y remains free.

C. Varela 29

Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?
Consider:

λx.(λx.(s x) (λx.(i x) x))

There are two possible evaluation orders:

λx.(λx.(s x) (λx.(i x) x))
⇒ λx.(λx.(s x) (i x))

⇒ λx.(s (i x))
and:

λx.(λx.(s x) (λx.(i x) x))
⇒ λx.(s (λx.(i x) x))

⇒ λx.(s (i x))

Is the final result always the same?

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

Applicative
Order

Normal Order

C. Varela 30

Church-Rosser Theorem
If a lambda calculus expression can be evaluated in two different
ways and both ways terminate, both ways will yield the same result.

 e

e1 e2

e’

Also called the diamond or confluence property.

Furthermore, if there is a way for an expression evaluation to
terminate, using normal order will cause termination.

C. Varela 31

Order of Evaluation and Termination

Consider:
(λx.y (λx.(x x) λx.(x x)))

There are two possible evaluation orders:

(λx.y (λx.(x x) λx.(x x)))
⇒ (λx.y (λx.(x x) λx.(x x)))

and:
(λx.y (λx.(x x) λx.(x x)))

⇒ y

In this example, normal order terminates whereas applicative order
does not.

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

Applicative
Order

Normal Order

C. Varela 32

Combinators

A lambda calculus expression with no free variables is called a
combinator. For example:

I: λx.x (Identity)

App: λf.λx.(f x) (Application)
C: λf.λg.λx.(f (g x)) (Composition)

L: (λx.(x x) λx.(x x)) (Loop)

Cur: λf.λx.λy.((f x) y) (Currying)

Seq: λx.λy.(λz.y x) (Sequencing--normal order)

ASeq: λx.λy.(y x) (Sequencing--applicative order)

 where y denotes a thunk, i.e., a lambda abstraction
 wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of
its context.

C. Varela 33

Combinators in Functional Programming
Languages

Most functional programming languages have a syntactic form for
lambda abstractions. For example the identity combinator:

λx.x

can be written in Oz as follows:

 fun {$ X} X end

in Haskell as follows: \x -> x
and in Scheme as follows: (lambda(x) x)

C. Varela 34

Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

fun {$ F}

 fun {$ X}
 fun {$ Y}
 {F X Y}
 end
 end

end

It takes a function of two arguments, F, and returns its curried
version, e.g.,

{{{Curry Plus} 2} 3} ⇒ 5

C. Varela 35

Exercises

1.  PDCS Exercise 2.11.1 (page 31).
2.  PDCS Exercise 2.11.2 (page 31).
3.  PDCS Exercise 2.11.5 (page 31).
4.  PDCS Exercise 2.11.6 (page 31).
5.  Define Compose in Haskell. Demonstrate the use of

curried Compose using an example.

