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The first programmer ever 

Ada Augusta, the Countess of Lovelace, the daughter of the poet Lord Byron 
 

Circa 1843 
 

Using Babbage’s Analytical Engine 
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The first “high-level” (compiled) 
programming language 

FORTRAN 
 

1954 
 

Backus at IBM 
 

It was called “an automatic coding system”, not a “programming language” 
 

Used for numerical computing 
 



C. Varela 4 

The first functional programming 
language 

Lisp 
 

1958 
 

McCarthy at Stanford 
 

For LISts Processing---lists represent both code and data 
 

Used for symbolic manipulation 
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The first object oriented 
programming language 

Simula 
 

1962 
 

Dahl and Nygaard at University of Oslo, Norway 
 

Used for computer simulations 
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The first logic programming 
language 

Prolog 
 

1972 
 

Roussel and Colmerauer at Marseilles University, France 
 

For “PROgrammation en LOGique”. 
 

Used for natural language processing and automated theorem proving 
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The first concurrent 
programming language 

Concurrent Pascal 
 

1974 
 

Hansen at Caltech 
 

Used for operating systems development 



C. Varela 8 

The first concurrent actor 
programming language 

PLASMA 
 

1975 
 

Hewitt at MIT 
 

Used for artificial intelligence (planning) 
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The first scripting language 

REXX 
 

1982 
 

Cowlishaw at IBM 
 

Only one data type:  character strings 
 

Used for “macro” programming and prototyping 
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The first multi-paradigm 
programming language 

Oz 
 

1995 
 

Smolka at Saarland University, Germany 
 

A logic, functional, imperative, object-oriented, constraint,  
concurrent, and distributed programming language 

 
Used for teaching programming and programming language research 
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Other programming languages 

Algol (Naur 1958) 
Cobol (Hopper 1959) 

BASIC (Kennedy and Kurtz 1964) 
Pascal (Wirth 1970) 

C (Kernighan and Ritchie 1971) 
Ada (Whitaker 1979) 

 

Smalltalk (Kay 1980) 
C++ (Stroustrop 1980) 

Eiffel (Meyer 1985) 
Java (Gosling 1994) 
C# (Hejlsberg 2000) 

Act (Lieberman 1981) 
ABCL (Yonezawa 1988) 

Actalk (Briot 1989) 
Erlang (Armstrong 1990) 

E (Miller et al 1998) 
SALSA (Varela and Agha 1999) 

ML (Milner 1973) 
Scheme (Sussman and Steele 1975) 

Haskell (Hughes et al 1987) 

Python (van Rossum 1985) 
Perl (Wall 1987) 

Tcl (Ousterhout 1988) 
Lua (Ierusalimschy et al 1994) 

JavaScript (Eich 1995) 
PHP (Lerdorf 1995) 

Ruby (Matsumoto 1995) 

Imperative

Object-Oriented
Actor-Oriented

Functional

Scripting
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Programming Concepts 
•  A computation model: describes a language and how the 

sentences (expressions, statements) of the language are 
executed by an abstract machine 

•  A set of programming techniques: to express solutions to 
the problems you want to solve 

•  A set of reasoning techniques: to reason about programs to 
increase the confidence that they behave correctly and to 
calculate their efficiency 
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Declarative Programming Model 
•  Guarantees that the computations are evaluating functions 

on (partial) data structures 
•  The core of functional programming (LISP, Scheme, ML, 

Haskell) 
•  The core of logic programming (Prolog, Mercury) 
•  Stateless programming vs. stateful (imperative) 

programming 
•  We will see how declarative programming underlies 

concurrent and object-oriented programming (Erlang, C++, 
Java, SALSA) 
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Defining a programming language 

•  Syntax (grammar) 
•  Semantics (meaning) 
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Language syntax 
•  Defines what are the legal programs, i.e. programs that can 

be executed by a machine (interpreter) 
•  Syntax is defined by grammar rules 
•  A grammar defines how to make ‘sentences’ out of 
‘words’ 

•  For programming languages: sentences are called 
statements (commands, expressions) 

•  For programming languages: words are called tokens 
•  Grammar rules are used to describe both tokens and 

statements 
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Language Semantics 
•  Semantics defines what a program does when it executes 
•  Semantics should be simple and yet allows reasoning about 

programs (correctness, execution time, and memory use) 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18 

Approaches to semantics 

Programming Language 

Kernel Language 

Operational model 

Formal calculus Abstract machine 

Aid the programmer 
in reasoning and 
understanding 

Mathematical study of 
programming (languages) 
λ-calculus, predicate calculus, 
π-calculus 

Aid to the implementer 
Efficient execution on 
a real machine 
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Programming Paradigms 
•  We will cover theoretical and practical aspects of three 

different programming paradigms: 
Paradigm Theory Languages 
Functional 
Programming 

Lambda Calculus Oz 
Haskell 

Concurrent 
Programming 

Actor Model SALSA 
Erlang 

Logic Programming First-Order Logic 
Horn Clauses 

Prolog 
Oz 

•  Each paradigm will be evaluated with a Programming Assignment (PA) 
and an Exam. 

•  Two highest PA grades count for 40% of total grade. Lowest PA grade 
counts for 10% of the total grade. Two highest Exam grades count for 40% 
of total grade. Lowest Exam grade counts for 10% of the total grade.   
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Mathematical Functions 
Take the mathematical function: 

 
f(x) = x2  

 
f is a function that maps integers to integers: 

 
f: Z → Z 

 
 
 
 

We apply the function f to numbers in its domain to obtain a number 
in its range, e.g.: 

f(-2) = 4 
 

Function

Domain Range
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Function Composition 
Given the mathematical functions: 

f(x) = x2 ,  g(x) = x+1  
 

f •g is the composition of f and g: 
 

f •g (x) = f(g(x)) 
 

 f • g (x) = f(g(x)) = f(x+1) = (x+1)2 = x2 + 2x + 1  
 g • f (x) = g(f(x)) = g(x2) = x2 + 1  

 
Function composition is therefore not commutative.  Function 
composition can be regarded as a (higher-order) function with the 
following type: 

   • : (Z → Z) x (Z → Z) → (Z → Z)  
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Lambda Calculus (Church and Kleene 
1930’s) 

A unified language to manipulate and reason about functions. 
 

Given 
f(x) = x2 

 
λx. x2 

represents the same f function, except it is anonymous. 
 

To represent the function evaluation f(2) = 4,  
we use the following λ-calculus syntax: 

 
(λx. x2  2)  ⇒  22 ⇒ 4  
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Lambda Calculus Syntax and Semantics 

The syntax of a λ-calculus expression is as follows: 
 

 e  ::=  v   variable 
  |  λv.e   functional abstraction 
  |  (e e)   function application 

 
 

The semantics of a λ-calculus expression is called beta-reduction: 
 

(λx.E M)  ⇒  E{M/x} 
 

where we alpha-rename the lambda abstraction E if necessary to 
avoid capturing free variables in M. 
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Currying 

The lambda calculus can only represent functions of one variable. 
It turns out that one-variable functions are sufficient to represent 
multiple-variable functions, using a strategy called currying. 
 
E.g., given the mathematical function:  h(x,y) = x+y  
of type      h: Z x Z→ Z 
 
We can represent h as h’ of type:   h’: Z→ Z→ Z 
Such that   

   h(x,y) = h’(x)(y) = x+y  
For example,  

   h’(2) = g, where g(y) = 2+y  
 
We say that h’ is the curried version of h. 
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Function Composition in Lambda Calculus 

S:   λx.(s x)     (Square) 

I:   λx.(i x)    (Increment) 

 
C:   λf.λg.λx.(f (g x))  (Function Composition) 

 
 

((C S) I) 
 

((λf.λg.λx.(f (g x)) λx.(s x)) λx.(i x)) 
⇒ (λg.λx.(λx.(s x) (g x)) λx.(i x)) 

⇒ λx.(λx.(s x) (λx.(i x) x)) 
⇒ λx.(λx.(s x) (i x)) 

⇒ λx.(s (i x)) 
 
 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 
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Free and Bound Variables 

The lambda functional abstraction is the only syntactic construct 
that binds variables.  That is, in an expression of the form: 
 

λv.e 
 
we say that free occurrences of variable v in expression e are bound.  
All other variable occurrences are said to be free. 
 
E.g., 
 

(λx.λy.(x y) (y w)) 

Free VariablesBound Variables
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α-renaming 

Alpha renaming is used to prevent capturing free occurrences of 
variables when reducing a lambda calculus expression, e.g., 
 

(λx.λy.(x y) (y w)) 
⇒ λy.((y w) y) 

This reduction erroneously captures the free occurrence of y. 
 

A correct reduction first renames y to z, (or any other fresh variable) 
e.g., 

(λx.λy.(x y) (y w)) 
⇒ (λx.λz.(x z) (y w)) 

⇒ λz.((y w) z) 
 

where y remains free. 
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Order of Evaluation in the Lambda Calculus 

Does the order of evaluation change the final result? 
Consider: 

λx.(λx.(s x) (λx.(i x) x)) 
 
There are two possible evaluation orders: 
 

λx.(λx.(s x) (λx.(i x) x)) 
⇒ λx.(λx.(s x) (i x)) 

⇒ λx.(s (i x)) 
and: 

λx.(λx.(s x) (λx.(i x) x)) 
⇒ λx.(s (λx.(i x) x)) 

⇒ λx.(s (i x)) 
 

Is the final result always the same? 
 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 

Applicative 
Order

Normal Order
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Church-Rosser Theorem 
If a lambda calculus expression can be evaluated in two different 
ways and both ways terminate, both ways will yield the same result. 

 
 e 
 

e1         e2 
 
 
e’ 
 
 

Also called the diamond or confluence property. 
 

Furthermore, if there is a way for an expression evaluation to 
terminate, using normal order will cause termination. 
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Order of Evaluation and Termination 

Consider: 
(λx.y (λx.(x x) λx.(x x))) 

 
 
 
There are two possible evaluation orders: 
 

(λx.y (λx.(x x) λx.(x x)))  
⇒ (λx.y (λx.(x x) λx.(x x))) 

and: 
(λx.y (λx.(x x) λx.(x x)))  

⇒  y 
 

In this example, normal order terminates whereas applicative order 
does not. 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 

Applicative 
Order

Normal Order
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Combinators 

A lambda calculus expression with no free variables is called a 
combinator.  For example: 
 
I:   λx.x      (Identity) 

App:   λf.λx.(f x)   (Application) 
C:   λf.λg.λx.(f (g x))  (Composition) 

L:   (λx.(x x) λx.(x x))  (Loop) 

Cur:   λf.λx.λy.((f x) y)  (Currying) 

Seq:   λx.λy.(λz.y x)   (Sequencing--normal order) 

ASeq:   λx.λy.(y x)   (Sequencing--applicative order) 

 where y denotes a thunk, i.e., a lambda abstraction  
 wrapping the second expression to evaluate. 

 
The meaning of a combinator is always the same independently of 
its context. 
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Combinators in Functional Programming 
Languages 

Most functional programming languages have a syntactic form for 
lambda abstractions.  For example the identity combinator: 
 

λx.x 
 
can be written in Oz as follows: 
 

   fun {$ X} X end 
 
in Haskell as follows:         \x -> x 
and in Scheme as follows:   (lambda(x) x) 
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Currying Combinator in Oz 

The currying combinator can be written in Oz as follows: 
 
fun {$ F} 

 fun {$ X}  
  fun {$ Y}  
   {F X Y} 
  end 
 end 

end 
 
It takes a function of two arguments, F, and returns its curried 
version, e.g., 

{{{Curry Plus} 2} 3} ⇒ 5 
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Exercises 

1.  PDCS Exercise 2.11.1 (page 31). 
2.  PDCS Exercise 2.11.2 (page 31). 
3.  PDCS Exercise 2.11.5 (page 31). 
4.  PDCS Exercise 2.11.6 (page 31). 
5.  Define Compose in Haskell.  Demonstrate the use of 

curried Compose using an example. 


