CSCI-1200 Data Structures — Fall 2017
Homework 3 — GPS Tracking & Stack Hacking

In this assignment we will explore the use of pointer arithmetic, allocation of single value and array variables
on the stack, passing arguments by value vs. by reference vs. by pointer, and the C calling convention.
Please have your notes from Lecture 5 available for this homework.

Part 1: Working with GPS Tracking Coordinates

In this part of the problem you will write code using C-style arrays and pointers to process GPS coordinate
data recorded by cell phone or smart watch running apps. We provide stater code for part 1 in the file named
partl.cpp. You should not modify any of the provided code, just add the missing pieces. You should not
use any STL classes or C++ features (other than what is in the provided code).

Make a simple new class named GPSData that contains three integers: the position coordinates x and y
(measured in feet), and the current speed s (measured in feet per minute). The only constructor for this
class is a default constructor that sets everything to zero. Write a set_position function that takes in two
integer arguments. The speed will be calculated later. Note: Because this class is so tiny, we won'’t separate
the declaration from the implementation from the main function. Keep everything in a single file. But your
class should have private member variables and the necessary accessor and modifier functions.

Then, write a non-member function named distance that takes as arguments a C-style array of GPSData (not
an STL vector) named data, an integer n, and a pass-by-reference integer parameter avg_feet_per_minute.
This function calculates and stores with each GPS sample the per-sample speed (in feet per minute) and
the average speed over the whole path. The function also calculates and returns the length of the path
connecting these data points. The per-sample speed is rounded down to the nearest integer. Note that the
input files we are working with contain one GPS coordinate sample every 4.25 seconds.

GPS data can be noisy, and the calculated path length likely overestimates the true distance. So let’s write
a function to named filter to average or smooth this data as shown in the diagram below. The function
takes in three arguments, two C-style arrays of GPSData named input and output, and an integer n. The
function should process the data to smooth out noisy zigzags in the GPS path data. The end points of the
output path are set to be the same as the endpoints of the input path. But each interior output path point
should be the average of three input points:

input; ; + input; + input,
3

output; =
The coordinates are rounded down to the nearest integer. The filter function should return the percentage
change in the total path length:

input path length — output path length
percentage change = 100 x [nput parh ‘eng OUtPWt path eng

input path length

original GPS data after 1 iteration of smoothing
90

60

0 30 60 90 120 150 180 210 0 30 60 90 120 150 180 210



We provide the recursive_filter function which repeatedly calls your filter function until the percentage
change in the path length drops below a target threshold. If you specify a very small percentage change
target, the final path will be an approximately straight line between the two original endpoints. (Because
we are rounding the GPS coordinates to the closest integer, the path won’t be perfectly straight.)

To finish the code for Part 1, you’ll have to write implement the printing helper functions. Then you should
be all set to test and debug the code. We provide a few input data files of GPS coordinates. You’'ll call the
program with 1, 2, or 3 arguments. The first is the name of the input file. The second (optional) parameter
is the number of coordinate points from the file to process — by default it will process all of the points. And
the third (optional) parameter is the percentage change stopping criteria threshold for recursive filtering.

Make sure your output is debugged before moving on to the next parts.

Part 2: Diagramming Memory

What will happen if your distance or filter functions are incorrectly used and the length of the array(s)
are not the same as n? What will happen if n is too small? If n is too big? What if the filter input array is
bigger than the filter output array? Or vice versa? How might the order that the variables were declared
in the main function impact the situation?

Following the conventions introduced in Lecture 5, draw paper & pencil diagrams of the variables, arrays,
and pointers on the stack for the correct usage of these functions and at least two different incorrect use
cases. Please be neat! Scan these drawings or take a picture of these drawings with your phone. You will
upload these digital images with your homework, along with the well-written writeup of your expectations
in the your README. txt. Complete this portion of the homework before moving on to Part 3. Note: You
will not be graded on the correctness of your predictions, but rather on your thought process and clarity of
your diagrams and discussion.

Part 3: Poking around in the Stack

Now let’s print out the contents of memory and see what’s going on. We have provided the TheStack class (in
the_stack.h and the_stack.cpp) to help visualize the memory on the stack as we allocate local variables
and call functions. Study the sample usage of this class in the provided file part3. cpp.

First, compile and run this program on your computer using g++ or clang++. We recommend the following
options:
g++ -Wall -m32 -00 -g -o part3_example.out the_stack.cpp part3_example.cpp

-00 requests no compiler optimizations. This is important so that the compiler doesn’t simplify away some of
variables or functions that it deems unnecessary or useless. You're welcome to try with optimization (-03),
which may or may not produce a condensed visualization. -m32 requests a 32-bit executable. (Yes! you
can compile and run 32-bit programs even if you have a 64-bit machine). We recommend using this flag for
this homework because the 32-bit compiler & program usage of the stack is simpler and more predictable.
Howewver, it appears that WSL doesn’t support 32-bit compilation, so you’ll need to leave out the -m32 flag.

Now run the program and study the output. You should see 2 stack frames for the 2 functions (main &
helper). You should see the local variables in each function. Because the compiler is allowed flexibility to
re-order the local variables, their order may not match the code.

Note that the stack on x86 architectures is in descending order. You can see the elements of the array
(which are required to be continuous). The first element of the array is required to be stored in the smallest
memory address in the block of memory allocated for the array, so it looks upside down. We won’t attempt
to explain or understand every memory location on the stack. The extra space between the variables is due
to temporary variables or padding inserted by the compiler to improve alignment. This extra space may be
labeled as “garbage or float?” or it might contain old data values or addresses that appear to be legal and
useful. The TheStack class does not attempt to visualize or display floating point values or strings, etc.



You should see the helper function arguments/parameters pushed on the stack just before the helper function
frame. Note: clang++ may make and use copies of the arguments. But you should still see the parameter
values just before the return address. Here is sample output from GNU/Linux Ubuntu gec/g++ 5.4:

size of intptr_t: 4
localvar address: 0xf£f94£070
x address: 0xff£94f£004
a address: 0xff94£010
y address: 0xf£f94£008
z address: 0xff£94£f00c
location: 0xff94f0b0 VALUE: 1
location: Oxff94f0ac garbage or float?
location: O0xff94f0a8 VALUE: 0
location: 0xff94f0a4 garbage or float?
location: Oxff94f0a0 garbage or float?
return address location: 0xff94f09c CODE: 0xf7403637
FUNCTION MAIN location: O0xff94f098 VALUE: 0
location: O0xff94f094 VALUE: 0
location: O0xff94f090 POINTER: 0xff94f0b0
location: 0xff94f08c garbage or float?
location: 0xff94f088 garbage or float?
location: 0xff94f084 garbage or float?
location: 0xff94f080 garbage or float?
location: 0xff94f07c garbage or float?
location: 0xff94f078 VALUE: 8
location: O0xff94f074 POINTER: 0xff94f07c
localvar location: O0xff94f070 VALUE: 2017
location: 0xff94f06c garbage or float?
location: 0xff94f068 garbage or float?
location: 0xff94f064 garbage or float?
location: 0xff94f060 VALUE: 1
location: 0xff94f05c garbage or float?
location: O0xff94f058 POINTER: 0xff94f074
param2 location: Oxff94f054 VALUE: 1863
paraml location: Oxff94f050 VALUE: 1776
return address location: Oxff94f04c CODE: 0x804b7e7

FUNCTION HELPER location: Oxff94f048 POINTER: Oxff94f098 ----> FUNCTION MAIN
location: 0xff94f044 VALUE: 0
location: 0xff94f040 POINTER: 0xff94f070 ----> localvar

location: 0xff94f03c garbage or float?
location: 0xff94f038 garbage or float?
location: 0xff94f034 garbage or float?
location: 0xff94f030 garbage or float?
location: 0xff94f02c garbage or float?
location: O0xff94f028 VALUE: 1
location: O0xff94f024 POINTER: 0xff94f02c
al4] location: 0xff94f020 VALUE: 14
location: O0xff94f0lc VALUE: 13
location: 0xff94f018 VALUE: 12
location: 0xff94f014 VALUE: 11
a[0] location: 0xff94f010 VALUE: 10

z location: 0xff94f00c VALUE: 98

y location: 0xff94f008 POINTER: 0xff94f004 ----> x

x location: 0xff94f004 VALUE: 72
location: 0xff94f000 garbage or float?
location: Oxff94effc garbage or float?
location: Oxff94eff8 POINTER: 0xff94f£024
location: Oxff94eff4 POINTER: O0xff94f00c ----> z
location: 0xff94eff0 garbage or float?




Now let’s use the TheStack visualization with the code we wrote for Part 1. In order to accommodate 32-bit
and 64-bit operating systems, the TheStack class uses the type intptr_t in place of int and all pointers.
On a 32 bit OS/compiler, this will be a standard 4 byte integer and on a 64 bit OS/compiler, this will be a
8 byte integer type. Copy your code from Part 1 to a new file named part3.cpp. Search and replace all use
of int to be intptr_t.

Now, follow the examples in the part3_example.cpp file to label the array named input storing the initial
GPS data. Print the stack before and after the call to the distance function and confirm that you can
see the speed member variables being set appropriately. Each “slot” of this array stores an instance of the
GPSData class. The compiler is required to pack together the member variables for each class instance, and
they are required to match the member variable order in the class declaration. What happens if the value
you pass in for n does not match the actual length of the input array?

Similarly, label the filtered array on the stack and print the stack before and after the first call to the filter
function. Confirm that you see the data calculated and stored in the array. Now test your hypotheses from
Part 2. What happens if the arrays are not the same length? Discuss your findings in your README.txt.
Paste small samples of the stack visualization into your README.txt to support your investigation. Make
sure to exaggerate the errors so that memory is misused or clobbered and correct program behavior is
disrupted.

NOTE: The set_label function expects a memory address of type intptr_t*, so you may encounter compiler
errors/warnings similar to: “cannot convert “GPSData*' to “intptr_t*'” or “cannot initialize a
parameter of type 'intptr_t *' (aka 'long+*') with an rvalue of type 'GPSData *”. Normally,
you don’t want to mix pointers of different types, but for this homework the conversion is simple and safe.
To fix these errors/warnings, use an explicit cast to override the compiler check:

thestack.set_label((intptr_t*)&tmp[0],"tmp[0]");

Part 4: Visualizing Pass-by-Value vs. Pass-by-Reference

Next let’s look more carefully at the arguments to the distance function. You’ll probably want to comment
out all of the stack labeling and printing code you added for the previous part. And let’s also comment
out the calls to filter and recursive filter. Inside of the distance function you can label the distance function
stack frame, the associated return address, and the 3 arguments to the function. When you run the code
and study the visualization, focus on the difference between the pass-by-value argument n and the pass-by-
reference argument avg_feet_per_minute. Pass-by-reference actually uses a pointer so that we can modify
the original local variable in calling function! (It’ll be helpful to label that variable too!) Save this code as
partd.cpp and paste the relevant portion of the output in your README.txt along with any additional
observations you made.

Part 5: Visualizing a Recursive Function

Finally, let’s visualize the stack frames generated by the execution of a recursive function. Remove or comment
out the stack visualization for the previous part(s), and re-enable the call to the recursive_filter function.
Add code at the top of the recursive_filter function to label the start of each stack frame, the associated
return address, and the local tmp array that stores the intermediate results of each call to filter. Now when
you run this code with inputl.txt you should see multiple stack frames labeled for the same function. And
when you adjust the percentage_change_threshold you should see more or fewer stack frames for that
function, as appropriate. Also note that the return address pointer to the code that made each call is the
same for all of the recursive_filter function frames.

Save this code as part5. cpp, and paste a small portion of the stack frame visualization into your README.txt,
along with your final thoughts.



