Checkpoint 1

Download these files:

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/10_trees/ds_set.h
http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/10_trees/test_ds_set.cpp

Implement and test the decrement operator for `tree_iterator`. Determine the appropriate sequence to `insert` the numbers 1-15 such that the resulting tree is *exactly balanced*. After using the `print_sideways` function to confirm the construction of this tree, test your iterators on the structure. Similarly, create a couple unbalanced trees to demonstrate that both the increment and decrement operators for iterators are debugged. Your decrement operator should correctly decrement the `end()` iterator. You can use the same “trick” we used in Lab 6 to make this work for `ds_list` iterators. Ask a TA if you have any questions.

To complete this checkpoint: Show one of the TAs your iterator decrement code and your tests cases.

Checkpoint 2

Add a member function called `accumulate` to the public interface of the `ds_set<T>` class, and provide its implementation. The function should take only one argument (of type `T`) and it should return the results of `accumulating` all the data values stored in the tree. The argument is the initial value for the accumulation. The function should only use `operator+=` on type `T`.

Test your code by showing that this works for both a set of ints, where the accumulate function should sum the values in the set (initial value parameter is 0), and a set of strings, where the accumulate function should concatenate the strings in the set (initial value parameter is ""). Does it matter if the `operator+=` for type `T` is *commutative*? How can you control the result of accumulate if it is *not* commutative?

To complete this checkpoint: Show a TA your completed and tested program.