Lazy Evaluation:
Infinite data structures, set comprehensions (CTM Section 4.5)

Carlos Varela
RPI
September 22, 2017

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
Lazy evaluation

• The functions written so far are evaluated eagerly (as soon as they are called)
• Another way is lazy evaluation where a computation is done only when the result is needed

• Calculates the infinite list:
 \[0 \mid 1 \mid 2 \mid 3 \mid \ldots \]

```
declare
fun lazy {Ints N}
  N\|\{Ints N+1\}
end
```
Sqrt using an infinite list

\[
\text{let } \sqrt{x} = \text{head} (\text{dropWhile} (\text{not . goodEnough}) \text{sqrtGuesses}) \\
\text{where}
\]

\[
\text{goodEnough guess} = \frac{\text{abs} (x - \text{guess} \cdot \text{guess})}{x} < 0.00001 \\
\text{improve guess} = \frac{(\text{guess} + x/\text{guess})}{2.0} \\
\text{sqrtGuesses} = 1:(\text{map improve sqrtGuesses})
\]

Infinite lists (sqrtGuesses) are enabled by lazy evaluation.
Functions in Haskell are lazy by default. That is, they can act on infinite data structures by delaying evaluation until needed.
Lazy evaluation (2)

- Write a function that computes as many rows of Pascal’s triangle as needed
- We do not know how many beforehand
- A function is *lazy* if it is evaluated only when its result is needed
- The function `PascalList` is evaluated when needed

```plaintext
fun lazy {PascalList Row}
  Row | {PascalList
    {AddList
      {ShiftLeft Row}
      {ShiftRight Row}}}
end
```
Lazy evaluation (3)

• Lazy evaluation will avoid redoing work if you decide first you need the 10th row and later the 11th row
• The function continues where it left off

\begin{verbatim}
declare
L = {PascalList [1]}
{Browse L}
{Browse L.1}
{Browse L.2.1}
\end{verbatim}

\begin{verbatim}
L<Future>
[1]
[1 1]
\end{verbatim}
Lazy execution

• Without lazyness, the execution order of each thread follows textual order, i.e., when a statement comes as the first in a sequence it will execute, whether or not its results are needed later

• This execution scheme is called *eager execution*, or *supply-driven* execution

• Another execution order is that a statement is executed only if its results are needed somewhere in the program

• This scheme is called *lazy evaluation*, or *demand-driven* evaluation (some languages use lazy evaluation by default, e.g., Haskell)
Example

B = \{F_1 \, X\}
C = \{F_2 \, Y\}
D = \{F_3 \, Z\}
A = B+C

• Assume \(F_1, \, F_2 \) and \(F_3 \) are lazy functions
• \(B = \{F_1 \, X\} \) and \(C = \{F_2 \, Y\} \) are executed only if and when their results are needed in \(A = B+C \)
• \(D = \{F_3 \, Z\} \) is not executed since it is not needed
Example

- In lazy execution, an operation suspends until its result is needed.
- The suspended operation is triggered when another operation needs the value for its arguments.
- In general, multiple suspended operations could start concurrently.

\[B = \{F1 \, X\} \]
\[C = \{F2 \, Y\} \]
\[A = B + C \]
Example II

- In data-driven execution, an operation suspends until the values of its arguments results are available.
- In general the suspended computation could start concurrently.

\[\text{Data driven} \]

\[B = \{F1 \ X\} \]

\[C = \{F2 \ Y\} \]

\[A = B + C \]
Using Lazy Streams

fun \{\text{Sum } Xs \text{ A Limit}\}
 \text{if Limit}>0 \text{ then}
 \text{case Xs of } X|Xr \text{ then}
 \{\text{Sum } Xr \text{ A+X Limit-1}\}
 \text{end}
 \text{else A end}
\text{end}

local Xs S in
 Xs=\{\text{Ints 0}\}
 S=\{\text{Sum } Xs \text{ 0 1500}\}
 \{\text{Browse } S\}
\text{end}
How does it work?

fun \{\text{Sum Xs A Limit}\}
 \text{if Limit}>0 \text{ then}
 \text{case Xs of X|Xr then}
 \{\text{Sum Xr A+X Limit-1}\}
 \text{end}
 \text{else A end}
\text{end}

fun \text{lazy} \{\text{Ints N}\}
 \text{N | \{Ints N+1\}}
\text{end}

local Xs S in
 Xs = \{\text{Ints 0}\}
 S = \{\text{Sum Xs 0 1500}\}
 \{\text{Browse S}\}
\text{end}
Improving throughput

• Use a lazy buffer
• It takes a lazy input stream In and an integer N, and returns a lazy output stream Out
• When it is first called, it first fills itself with N elements by asking the producer
• The buffer now has N elements filled
• Whenever the consumer asks for an element, the buffer in turn asks the producer for another element
The buffer example
fun {Buffer1 In N}
 End={List.drop In N}

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

Traversing the In stream, forces the producer to emit N elements
fun {Buffer2 In N}
 End = thread
 {List.drop In N}
 end
fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

Traversing the In stream, forces the producer to emit N elements and at the same time serves the consumer
fun {Buffer3 In N}
 End = thread
 {List.drop In N}
end
fun lazy {Loop In End}
 E2 = thread End.2 end
 In.1|{Loop In.2 E2}
end
in
{Loop In End}
end

Traverse the In stream, forces
the producer to emit N elements
and at the same time serves the
consumer, and requests the next
element ahead
Larger Example: The Sieve of Eratosthenes

- Produces prime numbers
- It takes a stream 2...N, peals off 2 from the rest of the stream
- Delivers the rest to the next sieve
Lazy Sieve

fun lazy {Sieve Xs}
 X|Xr = Xs in
 X | {Sieve {LFilter
 Xr
 fun {$ Y} Y mod X \neq 0 end
)}
end

fun {Primes} {Sieve {Ints 2}} end
Lazy Filter

For the Sieve program we need a lazy filter

fun lazy {LFilter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
 end
end
Primes in Haskell

```
ints :: (Num a) => a -> [a]
ints n = n : ints (n+1)

sieve :: (Integral a) => [a] -> [a]
sieve (x:xr) = x:sieve (filter (\y -> (y `mod` x /= 0)) xr)

primes :: (Integral a) => [a]
primes = sieve (ints 2)
```

Functions in Haskell are lazy by default. You can use `take 20 primes` to get the first 20 elements of the list.
Define streams implicitly

• Ones = 1 | Ones
• Infinite stream of ones
Define streams implicitly

- \(Xs = 1 \mid \{LMap \ Xs \}
 \begin{array}{l}
 \text{fun } \{$ X} \ X+1 \text{ end} \}
 \end{array} \\
- \text{What is } Xs \text{ ?}
The Hamming problem

- Generate the first N elements of stream of integers of the form: $2^a \cdot 3^b \cdot 5^c$ with $a, b, c \geq 0$ (in ascending order)
The Hamming problem

- Generate the first N elements of stream of integers of the form: $2^a 3^b 5^c$ with $a, b, c \geq 0$ (in ascending order)
The Hamming problem

- Generate the first N elements of stream of integers of the form: $2^a \cdot 3^b \cdot 5^c$ with $a, b, c \geq 0$ (in ascending order)
Lazy File Reading

fun {ToList FO}
 fun lazy {LRead} L T in
 if {File.readBlock FO L T} then
 T = {LRead}
 else T = nil {File.close FO} end
 L
 end
 {LRead}
end

• This avoids reading the whole file in memory
List Comprehensions

- Abstraction provided in lazy functional languages that allows writing higher level set-like expressions
- In our context we produce lazy lists instead of sets
- The mathematical set expression
 - \(\{ x \cdot y \mid 1 \leq x \leq 10, 1 \leq y \leq x \} \)
- Equivalent List comprehension expression is
 - \([X \cdot Y \mid X = 1..10 \ ; \ Y = 1..X]\)
- Example:
 - \([1 \cdot 1 \ 2 \cdot 1 \ 2 \cdot 2 \ 3 \cdot 1 \ 3 \cdot 2 \ 3 \cdot 3 \ldots \ 10 \cdot 10]\)
List Comprehensions

- The general form is
- \[f(x,y,...,z) \mid x \leftarrow \text{gen}(a1,...,an) ; \text{guard}(x,...) \]
 \[y \leftarrow \text{gen}(x, a1,...,an) ; \text{guard}(y,x,...) \]
-

- No linguistic support in Mozart/Oz, but can be easily expressed
Example 1

- \(z = [x\#x \mid x \leftarrow \text{from}(1,10)] \)
- \(Z = \{ \text{LMap} \ \{ \text{LFrom} 1 10 \} \ \text{fun} \{ X \} \ X\#X \ \text{end} \} \)

- \(z = [x\#y \mid x \leftarrow \text{from}(1,10), y \leftarrow \text{from}(1,x)] \)
- \(Z = \{ \text{LFlatten} \)
 \(\{ \text{LMap} \ \{ \text{LFrom} 1 10 \} \)
 \(\text{fun} \{ X \} \ \{ \text{LMap} \ \{ \text{LFrom} 1 X \} \)
 \(\text{fun} \ \{ Y \} \ X\#Y \ \text{end} \)
 \)
 \(\text{end} \)
 \} \)

C. Varela; Adapted from S. Haridi and P. Van Roy
Example 2

- \(z = [x#y \mid x \leftarrow \text{from}(1,10), y \leftarrow \text{from}(1,x), x+y\leq10] \)
- \(Z = \{ \text{LFfilter} \)

 \{ \text{LFlatten}
 \{ \text{LMap} \{ \text{LFrom} 1 \ 10 \}
 \text{fun} \{ \$ X \} \{ \text{LMap} \{ \text{LFrom} 1 \ X \}
 \text{fun} \{ \$ Y \} X#Y \text{ end} \} \}
 \text{end} \} \}

\text{fun} \{ \$ X#Y \} X+Y=\langle 10 \ \text{end} \} \}
List Comprehensions in Haskell

\[
\text{lc1} = [(x,y) \mid x \leftarrow [1..10], y \leftarrow [1..x]] \\
\]

\[
\text{lc2} = \text{filter } (\lambda(x,y)\rightarrow(x+y\leq10)) \\text{lc1} \\
\]

\[
\text{lc3} = [(x,y) \mid x \leftarrow [1..10], y \leftarrow [1..x], x+y\leq10] \\
\]

Haskell provides syntactic support for list comprehensions. List comprehensions are implemented using a built-in list monad.
Quicksort using list comprehensions

\[
\text{quicksort} :: \text{(Ord } a) \Rightarrow [a] \to [a] \\
\text{quicksort } [] = [] \\
\text{quicksort } (h:t) = \text{quicksort} [x \mid x <- t, x < h] ++ [h] ++ \text{quicksort} [x \mid x <- t, x \geq h]
\]
Higher-order programming

Higher-order programming = the set of programming techniques that are possible with procedure values (lexically-scoped closures)

- **Basic operations**
 - **Procedural abstraction**: creating procedure values with lexical scoping
 - **Genericity**: procedure values as arguments
 - **Instantiation**: procedure values as return values
 - **Embedding**: procedure values in data structures

Higher-order programming is the foundation of component-based programming and object-oriented programming
Embedding

• Embedding is when procedure values are put in data structures

• Embedding has many uses:
 – **Modules**: a module is a record that groups together a set of related operations
 – **Software components**: a software component is a generic function that takes a set of modules as its arguments and returns a new module. It can be seen as specifying a module in terms of the modules it needs.
 – **Delayed evaluation** (also called explicit lazy evaluation): build just a small part of a data structure, with functions at the extremities that can be called to build more. The consumer can control explicitly how much of the data structure is built.
Explicit lazy evaluation

- Supply-driven evaluation. (e.g. The list is completely calculated independent of whether the elements are needed or not.)
- Demand-driven execution. (e.g. The consumer of the list structure asks for new list elements when they are needed.)
- Technique: a programmed trigger.
- How to do it with higher-order programming? The consumer has a function that it calls when it needs a new list element. The function call returns a pair: the list element and a new function. The new function is the new trigger: calling it returns the next data item and another new function. And so forth.
Explicit lazy functions

fun lazy \{\text{From } N\}
\quad N \mid \{\text{From } N+1\}
end

fun \{\textbf{From } N\}
\quad \text{fun } \{$\} \; N \mid \{\textbf{From } N+1\} \text{ end}
end
The following defines the syntax of a statement, $\langle s \rangle$ denotes a statement:

$$
\langle s \rangle ::= \text{skip} \quad \text{empty statement}
$$

\[
\begin{align*}
| & \quad \ldots \\
| & \quad \text{thread } \langle s_1 \rangle \text{ end} \quad \text{thread creation} \\
| & \quad \{ \text{ByNeed fun} \{\$\} \langle e \rangle \text{ end} \} \langle x \rangle \{ \text{by need statement} \\
\end{align*}
\]

C. Varela; Adapted from S. Haridi and P. Van Roy
some statement

\{ \text{ByNeed fun\{\$\} \langle e \rangle \text{ end } X,E \} \}

A function value is created in the store (say f) the function f is associated with the variable x execution proceeds immediately to next statement
Implementation

A function value is created in the store (say f) the function f is associated with the variable x execution proceeds immediately to next statement
Accessing the ByNeed variable

• \(X = \{ \text{ByNeed fun} \{ \$ \} \ 111*111 \ \text{end} \} \) (by thread T0)

• Access by some thread T1
 – if \(X > 1000 \) then \{Browse hello#X\} end

 or

 – \{Wait X\}
 – Causes X to be bound to 12321 (i.e. 111*111)
Implementation

Thread T1

1. X is needed
2. start a thread T2 to execute F (the function)
3. only T2 is allowed to bind X

Thread T2

1. Evaluate Y = {F}
2. Bind X the value Y
3. Terminate T2

4. Allow access on X
Lazy functions

```plaintext
fun lazy {Ints N}
    N | {Ints N+1}
end

fun {Ints N}
    fun {F} N | {Ints N+1} end
in {ByNeed F}
end
```
Exercises

26. Write a lazy append list operation \texttt{LazyAppend}. Can you also write \texttt{LazyFoldL}? Why or why not?

27. CTM Exercise 4.11.10 (pg 341)
28. CTM Exercise 4.11.13 (pg 342)
29. CTM Exercise 4.11.17 (pg 342)
30. Solve exercise 29 (Hamming problem) in Haskell.