Declarative Programming Techniques

Accumulators (CTM 3.4.3)
Difference Lists (CTM 3.4.4)

Carlos Varela
Rensselaer Polytechnic Institute
Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

December 1, 2017
Accumulators

- *Accumulator programming* is a way to handle state in declarative programs. It is a programming technique that uses arguments to carry state, transform the state, and pass it to the next procedure.
- Assume that the state S consists of a number of components to be transformed individually:
 \[S = (X,Y,Z,...) \]
- For each predicate P, each state component is made into a pair, the first component is the *input* state and the second component is the output state after P has terminated.
- S is represented as
 \[(X_{in}, X_{out}, Y_{in}, Y_{out}, Z_{in}, Z_{out}, ...) \]
A Trivial Example in Prolog

\[\text{increment}(N0,N) :- \]
\[\text{N is } N0 + 1.\]

\[\text{square}(N0,N) :- \]
\[\text{N is } N0 \times N0.\]

\[\text{inc_square}(N0,N) :- \]
\[\text{increment}(N0,N1), \]
\[\text{square}(N1,N).\]

increment takes \(N0\) as the input and produces \(N\) as the output by adding 1 to \(N0\).

square takes \(N0\) as the input and produces \(N\) as the output by multiplying \(N0\) to itself.

inc_square takes \(N0\) as the input and produces \(N\) as the output by using an intermediate variable \(N1\) to carry \(N0+1\) (the output of **increment**) and passing it as input to **square**. The pairs \(N0-N1\) and \(N1-N\) are called *accumulators*.
A Trivial Example in Oz

proc {Increment N0 N}
 N = N0 + 1
end

proc {Square N0 N}
 N = N0 * N0
end

proc {IncSquare N0 N}
 N1 in
 {Increment N0 N1}
 {Square N1 N}
end

Increment takes N0 as the input and produces N as the output by adding 1 to N0.

Square takes N0 as the input and produces N as the output by multiplying N0 to itself.

IncSquare takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of **Increment**) and passing it as input to **Square**. The pairs N0-N1 and N1-N are called *accumulators*.
Accumulators

- Assume that the state S consists of a number of components to be transformed individually:
 \[S = (X,Y,Z) \]
- Assume P_1 to P_n are procedures in Oz

\[
\text{proc} \{ P\ X_0\ X\ Y_0\ Y\ Z_0\ Z \} \\
\quad : \\
\quad \{ P_1\ X_0\ X_1\ Y_0\ Y_1\ Z_0\ Z_1 \} \\
\quad \{ P_2\ X_1\ X_2\ Y_1\ Y_2\ Z_1\ Z_2 \} \quad : \\
\quad \{ P_n\ X_{n-1}\ X\ Y_{n-1}\ Y\ Z_{n-1}\ Z \}
\]
end

- The procedural syntax is easier to use if there is more than one accumulator

The same concept applies to predicates in Prolog
MergeSort Example

• Consider a variant of MergeSort with accumulator
• `proc {MergeSort1 N S0 S Xs}
 – N is an integer,
 – S0 is an input list to be sorted
 – S is the remainder of S0 after the first N elements are sorted
 – Xs is the sorted first N elements of S0
• The pair (S0, S) is an accumulator
• The definition is in a procedural syntax in Oz because it has two outputs S and Xs
Example (2)

fun \{\text{MergeSort} \ Xs\} \\
\quad \text{Ys in} \\
\quad \{\text{MergeSort1} \ \{\text{Length} \ Xs\} \ Xs _ \ Ys\} \\
\quad \text{Ys} \\
end

proc \{\text{MergeSort1} \ N \ S0 \ S \ Xs\} \\
\quad \text{if} \ N==0 \ \text{then} \ S = S0 \ Xs = \text{nil} \\
\quad \text{elseif} \ N ==1 \ \text{then} \ X \text{ in} \ X|S = S0 \ Xs=[X] \\
\quad \text{else} \ %\% \ N > 1 \\
\qquad \text{local} \ S1 \ Xs1 \ Xs2 \ NL \ NR \ \text{in} \\
\qquad \quad NL = N \ \text{div} \ 2 \\
\qquad \quad NR = N - NL \\
\qquad \\{\text{MergeSort1} \ NL \ S0 \ S1 \ Xs1\} \\
\qquad \\{\text{MergeSort1} \ NR \ S1 \ S \ Xs2\} \\
\qquad Xs = \{\text{Merge} \ Xs1 \ Xs2\} \\
\quad \text{end} \\
\quad \text{end} \\
end
MergeSort Example in Prolog

```prolog
mergesort(Xs,Ys) :-
    length(Xs,N),
    mergesort1(N,Xs,_,Ys).
```

```prolog
mergesort1(0,S,S,[]) :- !.
mergesort1(1,[X|S],S,[X]) :- !.
mergesort1(N,S0,S,Xs) :-
    NL is N // 2,
    NR is N - NL,
    mergesort1(NL,S0,S1,Xs1),
    mergesort1(NR,S1,S,Xs2),
    merge(Xs1,Xs2,Xs).
```
Multiple accumulators

- Consider a stack machine for evaluating arithmetic expressions
- Example: \((1+4)-3\)
- The machine executes the following instructions:
 - push(1)
 - push(4)
 - plus
 - push(3)
 - minus

\[
\begin{array}{c}
4 \\
1 \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
5 \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
3 \\
5 \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
2 \\
\end{array}
\]
Multiple accumulators (2)

- Example: (1+4)-3
- The arithmetic expressions are represented as trees:

 \[
 \text{minus(plus(1 4) 3)}
 \]
- Write a procedure that takes arithmetic expressions represented as trees and output a list of stack machine instructions and counts the number of instructions

\[
\text{proc \{} \text{ExprCode} \text{ Expr} \text{ Cin Cout Nin Nout} \}\]

- Cin: initial list of instructions
- Cout: final list of instructions
- Nin: initial count
- Nout: final count
Multiple accumulators (3)

```haskell
proc {ExprCode Expr C0 C N0 N}
  case Expr
    of plus(Expr1 Expr2) then C1 N1 in
        C1 = plus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] minus(Expr1 Expr2) then C1 N1 in
        C1 = minus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] l andthen {IsInt l} then
        C = push(l)|C0
        N = N0 + 1
    end
  end
end
```
Multiple accumulators (4)

proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
 end
end

proc {SeqCode Es C0 C N0 N}
 case Es
 of nil then C = C0 N = N0
 E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
 end
end
Shorter version (4)

\[
\text{proc } \{\text{ExprCode Expr C0 C N0 N}\}
\begin{align*}
\text{case } \text{Expr} \\
\text{of } \text{plus}(\text{Expr1 Expr2}) \text{ then} & \quad \{\text{SeqCode } [\text{Expr2 Expr1}] \text{ plus}|C0 C N0 + 1 N\} \\
\text{minus}(\text{Expr1 Expr2}) \text{ then} & \quad \{\text{SeqCode } [\text{Expr2 Expr1}] \text{ minus}|C0 C N0 + 1 N\} \\
\text{I andthen } \{\text{IsInt I}\} \text{ then} & \quad C = \text{push}(I)|C0 \\
& \quad N = N0 + 1 \\
\end{align*}
\text{end}
\text{end}
\]

\[
\text{proc } \{\text{SeqCode Es C0 C N0 N}\}
\begin{align*}
\text{case } \text{Es} \\
\text{of } \text{nil} \text{ then} & \quad C = C0 N = N0 \\
\text{E|Er} \text{ then} & \quad N1 C1 \text{ in} \\
& \quad \{\text{ExprCode E C0 C1 N0 N1}\} \\
& \quad \{\text{SeqCode Er C1 C N1 N}\} \\
\text{end}
\end{align*}
\text{end}
\]
Functional style (4)

fun \{ExprCode \text{Expr} \ t(C0\ N0)\}
 case \text{Expr}
 of plus(\text{Expr1} \ \text{Expr2}) \ then
 \{\text{SeqCode} [\text{Expr2} \ \text{Expr1}] \ t(\text{plus}|C0\ N0 + 1)\}
 [] minus(\text{Expr1} \ \text{Expr2}) \ then
 \{\text{SeqCode} [\text{Expr2} \ \text{Expr1}] \ t(\text{minus}|C0\ N0 + 1)\}
 [] I \ andthen \{\text{IsInt}\ I\} \ then
 t(\text{push}(I)|C0\ N0 + 1)
 end
end

def \{\text{SeqCode} \text{Es} \ T\}
 case \text{Es}
 of nil \ then \ T
 [] E|Er \ then
 T1 = \{\text{ExprCode}\ E\ T\} \ in
 \{\text{SeqCode}\ Er\ T1\}
 end
end
Difference lists in Oz

• A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list

• X # X % Represent the empty list

• nil # nil % idem

• [a] # [a] % idem

• (a|b|c|X) # X % Represents [a b c]

• [a b c d] # [d] % idem

• [a b c d|Y] # [d|Y] % idem

• [a b c d|Y] # Y % Represents [a b c d]
Difference lists in Prolog

A difference list is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list:

- X, X % Represent the empty list
- $[,] , []$ % idem
- $[a], [a]$ % idem
- $[a,b,c|X] , X$ % Represents $[a,b,c]$
- $[a,b,c,d] , [d]$ % idem
- $[a,b,c,d|Y] , [d|Y]$ % idem
- $[a,b,c,d|Y] , Y$ % Represents $[a,b,c,d]$
Difference lists in Oz (2)

- When the second list is unbound, an append operation with another difference list takes constant time
- fun {AppendD D1 D2}
 S1 # E1 = D1
 S2 # E2 = D2
 in E1 = S2
 S1 # E2
end
- local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end
- Displays (1|2|3|4|5|Y)#Y
Difference lists in Prolog (2)

• When the second list is unbound, an append operation with another difference list takes constant time

\[
\text{append}_\text{dl}(S1,E1, S2,E2, S1,E2) \ :- \ E1 = S2.
\]

• \?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E).

Displays

\[
X = [4, 5|_G193] \\
Y = _G193 \\
S = [1, 2, 3, 4, 5|_G193] \\
E = _G193 ;
\]
A FIFO queue with difference lists (1)

- A *FIFO queue* is a sequence of elements with an insert and a delete operation.
 - Insert adds an element to the end and delete removes it from the beginning.
- Queues can be implemented with lists. If L represents the queue content, then deleting X can remove the head of the list matching X|T but inserting X requires traversing the list \{Append L [X]\} (insert element at the end).
 - Insert is inefficient: it takes time proportional to the number of queue elements.
- With difference lists we can implement a queue with constant-time insert and delete operations.
 - The queue content is represented as q(N S E), where N is the number of elements and S#E is a difference list representing the elements.
A FIFO queue with difference lists (2)

- Inserting ‘b’:
 - In: q(1 a|T T)
 - Out: q(2 a|b|U U)
- Deleting X:
 - In: q(2 a|b|U U)
 - Out: q(1 b|U U)
 and X=a
- Difference list allows operations at both ends
- N is needed to keep track of the number of queue elements

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
 case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end
end

fun {Delete Q X}
 case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end
end

fun {EmptyQueue Q}
 case Q of q(N S E) then N==0 end end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
fun {Flatten Xs}
case Xs
 of nil then nil
 [] X|Xr andthen {IsLeaf X} then
 X|{Flatten Xr}
 [] X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
 end
end

Flatten takes a list of elements and sub-lists and returns a list with only the elements, e.g.:

{Flatten [1 [2] [[3]]]} = [1 2 3]

Let us replace lists by difference lists and see what happens.
Flatten with difference lists (1)

- Flatten of nil is X#X
- Flatten of a leaf X|Xr is (X|Y1)#Y
 - flatten of Xr is Y1#Y
- Flatten of X|Xr is Y1#Y where
 - flatten of X is Y1#Y2
 - flatten of Xr is Y3#Y
 - equate Y2 and Y3

Here is what it looks like as text
Flatten with difference lists (2)

```
proc {FlattenD Xs Ds}
  case Xs
    of nil then Y in Ds = Y#Y
    [] X|Xr andthen {IsLeaf X} then Y1 Y in
      {FlattenD Xr Y1#Y2}
      Ds = (X|Y1)#Y
    [] X|Xr andthen {IsList X} then Y0 Y1 Y2 in
      Ds = Y0#Y2
      {FlattenD X Y0#Y1}
      {FlattenD Xr Y1#Y2}
  end
end

fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end
```

Here is the new program. It is much more efficient than the first version.
Reverse

• Here is our recursive reverse:

```plaintext
fun {Reverse Xs}
  case Xs
  of nil then nil
      [] X|Xr then {Append {Reverse Xr} [X]}
  end
end
```

• Rewrite this with difference lists:
 – Reverse of nil is X#X
 – Reverse of X|Xs is Y1#Y, where
 • reverse of Xs is Y1#Y2, and
 • equate Y2 and X|Y
Reverse with difference lists (1)

- The naive version takes time proportional to the square of the input length.
- Using difference lists in the naive version makes it linear time.
- We use two arguments Y_1 and Y instead of $Y_1#Y$.
- With a minor change we can make it iterative as well.

```haskell
fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}
case Xs
  of nil then Y1=Y
[] X|Xr then Y2 in
    {ReverseD Xr Y1 Y2}
    Y2 = X|Y
  end
end
R in
{ReverseD Xs R nil}
R
end
```
Reverse with difference lists (2)

```
fun {ReverseD Xs}
  proc {ReverseD Xs Y1 Y}
    case Xs
      of nil then Y1=Y
      [] X|Xr then
        {ReverseD Xr Y1 X|Y}
    end
  end
R in
{ReverseD Xs R nil}
R
end
```
Difference lists: Summary

• Difference lists are a way to represent lists in the declarative model such that one append operation can be done in constant time
 – A function that builds a big list by concatenating together lots of little lists can usually be written efficiently with difference lists
 – The function can be written naively, using difference lists and append, and will be efficient when the append is expanded out

• Difference lists are declarative, yet have some of the power of destructive assignment
 – Because of the single-assignment property of dataflow variables

• Difference lists originated from Prolog and are used to implement, e.g., definite clause grammar rules for natural language parsing.
91. Rewrite the Oz multiple accumulators example in Prolog.
92. Rewrite the Oz FIFO queue with difference lists in Prolog.
93. Draw the search trees for Prolog queries:
 - `append([1,2],[3],L).`
 - `append(X,Y,[1,2,3]).`
 - `append_dl([1,2|X],X,[3|Y],Y,S,E).`
94. CTM Exercise 3.10.11 (page 232)
95. CTM Exercise 3.10.14 (page 232)
96. CTM Exercise 3.10.15 (page 232)