Logic Programming (PLP 11)
Predicate Calculus, Horn Clauses,
Clocksin-Mellish Procedure

Carlos Varela
Rensselaer Polytechnic Institute

November 10, 2017
An Early (1971) “Conversation”

USER:
- Cats kill mice.
- Tom is a cat who does not like mice who eat cheese.
- Jerry is a mouse who eats cheese.
- Max is not a mouse.
- What does Tom do?

COMPUTER:
- Tom does not like mice who eat cheese.
- Tom kills mice.

USER:
- Who is a cat?

COMPUTER:
- Tom.

USER:
- What does Jerry eat?

COMPUTER:
- Cheese.

USER:
- Who does not like mice who eat cheese?

COMPUTER:
- Tom.

USER:
- What does Tom eat?

COMPUTER:
- What cats who do not like mice who eat cheese eat.
Another Conversation

USER:
Every psychiatrist is a person.
Every person he analyzes is sick.
Jacques is a psychiatrist in Marseille.
Is Jacques a person?
Where is Jacques?
Is Jacques sick?

COMPUTER:
Yes.
In Marseille.
I don’t know.
Logic programming

• A program is a collection of axioms, from which theorems can be proven.
• A goal states the theorem to be proved.
• A logic programming language implementation attempts to satisfy the goal given the axioms and built-in inference mechanism.
Propositional Logic

- Assigning truth values to logical propositions.
- Formula syntax:

\[
\begin{align*}
\mathbf{f} & ::= \mathbf{v} & \text{symbol} \\
| & \mathbf{f} \land \mathbf{f} & \text{and} \\
| & \mathbf{f} \lor \mathbf{f} & \text{or} \\
| & \mathbf{f} \iff \mathbf{f} & \text{if and only if} \\
| & \mathbf{f} \implies \mathbf{f} & \text{implies} \\
| & \neg \mathbf{f} & \text{not}
\end{align*}
\]
Truth Values

- To assign a truth values to a propositional formula, we have to assign truth values to each of its atoms (symbols).
- Formula semantics:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a ∧ b</th>
<th>a ∨ b</th>
<th>a ⇔ b</th>
<th>a ⇒ b</th>
<th>¬ a</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Tautologies

• A *tautology* is a formula, true for all possible assignments.

• For example: \(\neg \neg p \iff p \)

• The contrapositive law:

\[
(p \Rightarrow q) \iff (\neg q \Rightarrow \neg p)
\]

• De Morgan’s law:

\[
\neg (p \land q) \iff (\neg p \lor \neg q)
\]
First Order Predicate Calculus

- Adds variables, terms, and (first-order) quantification of variables.
- Predicate syntax:

 \[a ::= p(v_1, v_2, \ldots, v_n) \quad \text{predicate} \]

 \[f ::= a \quad \text{atom} \]
 \[v = p(v_1, v_2, \ldots, v_n) \quad \text{equality} \]
 \[v_1 = v_2 \]
 \[f \land f \quad f \lor f \quad f \iff f \quad f \implies f \quad \neg f \]
 \[\forall v.f \quad \text{universal quantifier} \]
 \[\exists v.f \quad \text{existential quantifier} \]
In mathematical logic, a predicate is a function that maps constants or variables to true and false.

Predicate calculus enables reasoning about propositions.

For example:

\[\forall C [\text{rainy}(C) \land \text{cold}(C) \implies \text{snowy}(C)] \]
Quantifiers

• *Universal* (\forall) quantifier indicates that the proposition is true for all variable values.

• *Existential* (\exists) quantifier indicates that the proposition is true for at least one value of the variable.

• For example:

$$\forall A \ \forall B \ [(\exists C \ [\ takes(A,C) \land takes(B,C)]) \implies classmates(A,B)]$$
Structural Congruence Laws

\[P_1 \implies P_2 \equiv \neg P_1 \lor P_2 \]

\[\neg \exists X \ [P(X)] \equiv \forall X \ [\neg P(X)] \]
\[\neg \forall X \ [P(X)] \equiv \exists X \ [\neg P(X)] \]

\[\neg (P_1 \land P_2) \equiv \neg P_1 \lor \neg P_2 \]
\[\neg (P_1 \lor P_2) \equiv \neg P_1 \land \neg P_2 \]
\[\neg \neg P \equiv P \]

\[(P_1 \iff P_2) \equiv (P_1 \implies P_2) \land (P_2 \implies P_1) \]

\[P_1 \lor (P_2 \land P_3) \equiv (P_1 \lor P_2) \land (P_1 \lor P_3) \]
\[P_1 \land (P_2 \lor P_3) \equiv (P_1 \land P_2) \lor (P_1 \land P_3) \]

\[P_1 \lor P_2 \equiv P_2 \lor P_1 \]
Clausal Form

- Looking for a *minimal kernel* appropriate for theorem proving.
- Propositions are transformed into *normal form* by using structural congruence relationship.
- One popular normal form candidate is *clausal form*.
- Clocksin and Melish (1994) introduce a 5-step procedure to convert first-order logic propositions into clausal form.
Clocksin and Melish Procedure

1. Eliminate implication (\Rightarrow) and equivalence (\Leftrightarrow).
2. Move negation (\neg) inwards to individual terms.
3. **Skolemization**: eliminate existential quantifiers (\exists).
4. Move universal quantifiers (\forall) to top-level and make implicit, i.e., all variables are universally quantified.
5. Use distributive, associative and commutative rules of \lor, \land, and \neg, to move into *conjunctive normal form*, i.e., a conjunction of disjunctions (or *clauses*.)
Example

\[\forall A \left[\neg \text{student}(A) \Rightarrow \left(\neg \text{dorm_resident}(A) \land \neg \exists B \left[\text{takes}(A,B) \land \text{class}(B) \right] \right) \right] \]

1. Eliminate implication \((\Rightarrow)\) and equivalence \((\iff)\).

\[\forall A \left[\text{student}(A) \lor \left(\neg \text{dorm_resident}(A) \land \neg \exists B \left[\text{takes}(A,B) \land \text{class}(B) \right] \right) \right] \]

2. Move negation \((\neg)\) inwards to individual terms.

\[\forall A \left[\text{student}(A) \lor \left(\neg \text{dorm_resident}(A) \land \forall B \left[\neg \left(\text{takes}(A,B) \land \text{class}(B) \right) \right] \right) \right] \]

\[\forall A \left[\text{student}(A) \lor \left(\neg \text{dorm_resident}(A) \land \forall B \left[\neg \text{takes}(A,B) \lor \neg \text{class}(B) \right] \right) \right] \]
Example Continued

\[\forall A \ [\text{student}(A) \lor (\neg \text{dorm_resident}(A) \land \forall B \ [\neg \text{takes}(A,B) \lor \neg \text{class}(B)])] \]

3. **Skolemization**: eliminate existential quantifiers (\(\exists \)).

4. Move universal quantifiers (\(\forall \)) to top-level and make implicit, i.e., all variables are universally quantified.

\[\text{student}(A) \lor (\neg \text{dorm_resident}(A) \land (\neg \text{takes}(A,B) \lor \neg \text{class}(B))) \]

5. Use distributive, associative and commutative rules of \(\lor \), \(\land \), and \(\neg \), to move into *conjunctive normal form*, i.e., a conjunction of disjunctions (or *clauses*).

\[(\text{student}(A) \lor \neg \text{dorm_resident}(A)) \land (\text{student}(A) \lor \neg \text{takes}(A,B) \lor \neg \text{class}(B)) \]
Horn clauses

• A standard form for writing axioms, e.g.:

\[\text{father}(X,Y) \iff \text{parent}(X,Y), \text{male}(X). \]

• The Horn clause consists of:
 - A \textit{head} or consequent term \(H \), and
 - A \textit{body} consisting of terms \(B_i \)

\[H \iff B_0, B_1, \ldots, B_n \]

• The semantics is:

\[\langle \text{If } B_0, B_1, \ldots, \text{ and } B_n, \text{ then } H \rangle \]
Clausal Form to Prolog

\[(\text{student}(A) \lor \neg \text{dorm_resident}(A)) \land \\
(\text{student}(A) \lor \neg \text{takes}(A,B) \lor \neg \text{class}(B))\]

6. Use commutativity of \(\lor\) to move negated terms to the right of each clause.
7. Use \(P_1 \lor \neg P_2 \equiv P_2 \Rightarrow P_1 \equiv P_1 \Leftarrow P_2\)

\[(\text{student}(A) \Leftarrow \text{dorm_resident}(A)) \land \\
(\text{student}(A) \Leftarrow \neg (\neg \text{takes}(A,B) \lor \neg \text{class}(B)))\]

8. Move Horn clauses to Prolog:

\[
\text{student}(A) :\neg \ \text{dorm_resident}(A). \\
\text{student}(A) :\neg \ \text{takes}(A,B),\text{class}(B).
\]
Skolemization

\[\exists x \ [\text{takes}(x, \text{cs101}) \land \text{class_year}(x, 2)] \]

introduce a Skolem constant to get rid of existential quantifier (\(\exists\)):

\[\text{takes}(x, \text{cs101}) \land \text{class_year}(x, 2) \]

\[\forall x \ [\neg \text{dorm_resident}(x) \lor \exists A \ [\text{campus_address_of}(x, A)]] \]

introduce a Skolem function to get rid of existential quantifier (\(\exists\)):

\[\forall x \ [\neg \text{dorm_resident}(x) \lor \text{campus_address_of}(x, f(x))] \]
Limitations

- If more than one non-negated (positive) term in a clause, then it cannot be moved to a Horn clause (which restricts clauses to only one head term).

- If zero non-negated (positive) terms, the same problem arises (Prolog’s inability to prove logical negations).

- For example:
 - « every living thing is an animal or a plant »

\begin{align*}
\text{animal}(X) \lor \text{plant}(X) \lor \neg \text{living}(X) \\
\text{animal}(X) \lor \text{plant}(X) \iff \text{living}(X)
\end{align*}
Exercises

72. What is the logical meaning of the second Skolemization example if we do not introduce a Skolem function?

73. Convert the following predicates into Conjunctive Normal Form, and if possible, into Horn clauses:
 a) \(\forall C \ [\text{rainy}(C) \land \text{cold}(C) \Rightarrow \text{snowy}(C)] \)
 b) \(\exists C \ [\neg \text{snowy}(C)] \)
 c) \(\neg \exists C \ [\text{snowy}(C)] \)

74. PLP Exercise 11.5 (pg 571).

75. PLP Exercise 11.6 (pg 571).