Review from Lectures 12 & 13

- How to design and implement algorithms using three steps or stages:
 1. Generating and Evaluating Ideas
 2. Mapping Ideas into Code
 3. Getting the Details Right

- Lots of Examples

Today’s Lecture

- Operators as non-member functions
- Operators as member functions
- Operators as friend functions
- *Leftover from Lecture 13... Design Example: Conway’s Game of Life*

14.1 Complex Numbers — A Brief Review

- Complex numbers take the form \(z = a + bi \), where \(i = \sqrt{-1} \) and \(a \) and \(b \) are real.

- \(a \) is called the real part, \(b \) is called the imaginary part.

- If \(w = c + di \), then
 \[w + z = (a + c) + (b + d)i, \]
 \[w - z = (a - c) + (b - d)i, \]
 \[w \times z = (ac - bd) + (ad + bc)i \]

- The magnitude of a complex number is \(\sqrt{a^2 + b^2} \).

14.2 Complex Class declaration (complex.h)

```cpp
class Complex {
public:
    Complex(double x=0, double y=0) : real_(x), imag_(y) {} // Note: The compiler-written copy constructor & assignment operator // would do the correct thing for this class (so normally we would // recommend not implementing them yourself). But we implement them // here for discussion purposes...
    Complex(const Complex& old) : real_(old.real_), imag_(old.imag_) {} // copy constructor
    Complex& operator=(const Complex& rhs); // Assignment operator
    double Real() const { return real_; }
    void SetReal(double x) { real_ = x; }
    double Imaginary() const { return imag_; }
    void SetImaginary(double y) { imag_ = y; }
    double Magnitude() const { return sqrt(real_*real_ + imag_*imag_); }
    Complex operator+ (Complex const& rhs) const;
    Complex operator- () const; // unary operator- negates a complex number
    friend istream& operator>> (istream& istr, Complex& c);
private:
    double real_, imag_; // non-member function
    private: // non-member function
};
```

Complex operator- (Complex const& left, Complex const& right); // non-member function
ostream& operator<< (ostream& ostr, Complex const& c); // non-member function
14.3 Implementation of Complex Class (complex.cpp)

// Assignment operator
Complex& Complex::operator= (Complex const& rhs) {
 real_ = rhs.real_; // Assignment operator
 imag_ = rhs.imag_; // Addition operator as a member function.
 return *this; // Subtraction operator as a non-member function.
}

// Addition operator as a member function.
Complex Complex::operator+ (Complex const& rhs) const {
 double re = real_ + rhs.real_; // Unary negation operator. Note that there are no arguments.
 double im = imag_ + rhs.imag_; // Input stream operator as a friend function
 return Complex(re, im); // Output stream operator as an ordinary non-member function
}

// Subtraction operator as a non-member function.
Complex operator- (Complex const& lhs, Complex const& rhs) {
}

// Unary negation operator. Note that there are no arguments.
Complex Complex::operator- () const {
 return Complex(-real_, -imag_); // Unary negation operator. Note that there are no arguments.
}

// Input stream operator as a friend function
istream& operator>> (istream & istr, Complex & c) {
 istr >> c.real_ >> c.imag_; // Output stream operator as an ordinary non-member function
 return istr; // Output stream operator as an ordinary non-member function
}

// Output stream operator as an ordinary non-member function
ostream& operator<< (ostream & ostr, Complex const& c) {
 if (c.Imaginary() < 0) ostr << c.Real() << " - " << -c.Imaginary() << " i ";
 else ostr << c.Real() << " + " << c.Imaginary() << " i ";
 return ostr; // Output stream operator as an ordinary non-member function
}

14.4 Operators as Non-Member Functions and as Member Functions

- We have already written our own operators, especially operator<, to sort objects stored in STL containers
 and to create our own keys for maps.

- We can write them as non-member functions (e.g., operator-). When implemented as a non-member function,
 the expression: z - w is translated by the compiler into the function call: operator- (z, w)

- We can also write them as member functions (e.g., operator+). When implemented as a member function, the
 expression: z + w is translated into: z.operator+ (w)

This shows that operator+ is a member function of z, since z appears on the left-hand side of the operator.
Observe that the function has only one argument!

There are several important properties of the implementation of an operator as a member function:
- It is within the scope of class Complex, so private member variables can be accessed directly.
- The member variables of z, whose member function is actually called, are referenced by directly by name.
- The member variables of w are accessed through the parameter rhs.
- The member function is const, which means that z will not (and can not) be changed by the function.
 Also, since w will not be changed since the argument is also marked const.

- Both operator+ and operator- return Complex objects, so both must call Complex constructors to create these
 objects. Calling constructors for Complex objects inside functions, especially member functions that work on
 Complex objects, seems somewhat counter-intuitive at first, but it is common practice!
14.5 Exercises

- Write `operator*` for `Complex` numbers as a member function of the `Complex` class. Show the additions to `Complex.h` and `Complex.cpp`.

- Write `operator*` for `Complex` numbers as an ordinary non-member function instead of as a member function of the `Complex` class. Show the additions to `Complex.h` and `Complex.cpp`.

14.6 Assignment Operators

- The assignment operator: \(z_1 = z_2 \); becomes a function call: \(z_1.\text{operator}=(z_2) \);
 And cascaded assignments like: \(z_1 = z_2 = z_3 \); are really: \(z_1 = (z_2 = z_3) \);
 which becomes: \(z_1.\text{operator}=(z_2.\text{operator}=(z_3)) \);
 Studying these helps to explain how to write the assignment operator, which is usually a member function.

- The argument (the right side of the operator) is passed by constant reference. Its values are used to change the contents of the left side of the operator, which is the object whose member function is called. A reference to this object is returned, allowing a subsequent call to `operator=` (\(z_1.'s \text{operator} = \) in the example above). The identifier `this` is reserved as a pointer inside class scope to the object whose member function is called. Therefore, `*this` is a reference to this object.

- The fact that `operator=` returns a reference allows us to write code of the form: \((z_1 = z_2).\text{real}() \);

14.7 Exercise

- Write an `operator+=` as a member function of the `Complex` class. To do so, you must combine what you learned about `operator=` and `operator+`. In particular, the new operator must return a reference, `*this`.

14.8 Returning Objects vs. Returning References to Objects

- In the `operator+` and `operator-` functions we create new `Complex` objects and simply return the new object. The return types of these operators are both `Complex`.
 Technically, we don’t return the new object (which is stored only locally and will disappear once the scope of the function is exited). Instead we create a copy of the object and return the copy. This automatic copying happens outside of the scope of the function, so it is safe to access outside of the function. \textit{Note: It’s important that the copy constructor is correctly implemented!} Good compilers can minimize the amount of redundant copying without introducing semantic errors.

- When you change an existing object inside an operator and need to return that object, you must return a `reference` to that object. This is why the return types of `operator=` and `operator+=` are both `Complex&`. This avoids creation of a new object.

- A common error made by beginners (and some non-beginners!) is attempting to return a reference to a locally created object! This results in someone having a pointer to stale memory. The pointer may behave correctly for a short while... until the memory under the pointer is allocated and used by someone else.
14.9 Friend Classes vs. Friend Functions

- We're now going to shift gears slightly and discuss friend classes and functions. This will lead to the third method of writing an operator. Friendship is often used for closely related (interdependent) classes, but should be used sparingly.

- In the example below, the Foo class has designated the Bar to be a friend. This must be done in the public area of the declaration of Foo.

```cpp
class Foo {
public:
    friend class Bar;
    ...;
};
```

This allows member functions in class Bar to access all of the private member functions and variables of a Foo object as though they were public (but not vice versa). Note that Foo is giving friendship (access to its private contents) rather than Bar claiming it. What could go wrong if we allowed friendships to be claimed?

- Alternatively, within the definition of the class, we can designate specific functions to be “friend”s, which grants these functions access similar to that of a member function. The most common example of this is operators, and especially stream operators.

14.10 Stream Operators as Friend Functions

- The operators >> and << are defined for the Complex class. These are binary operators. The compiler translates: `cout << z3` into: `operator<<(cout, z3)`

Consecutive calls to the << operator, such as: `cout << "z3 = " << z3 << endl;` are translated into: `((cout << "z3 = ") << z3) << endl;`

Each application of the operator returns an ostream object so that the next application can occur.

- If we wanted to make one of these stream operators a regular member function, it would have to be a member function of the ostream class because this is the first argument (left operand). We cannot make it a member function of the Complex class. This is why stream operators are never member functions.

- Stream operators are either ordinary non-member functions (if the operators can do their work through the public class interface) or friend functions (if they need non public access).

14.11 Summary of Operator Overloading in C++

- Unary operators that can be overloaded: `+ - * & ~ ! ++ -- -> ->*`

- Binary operators that can be overloaded: `+ - * / % ^ & | << >> += -= *= /= %= ^= &|= <<= >>= |= &= |& <<= >= <= >>= <<= >>= |= &= |& |, |[] () new new[] delete delete[]`

- There are only a few operators that can not be overloaded: `. .* ?: ::`

- We can’t create new operators and we can’t change the number of arguments (except for the function call operator, which has a variable number of arguments).

- There are three different ways to overload an operator. When there is a choice, we recommend trying to write operators in this order:
 - Non-member function
 - Member function
 - Friend function

- The most important rule for clean class design involving operators is to NEVER change the intuitive meaning of an operator. The whole point of operators is lost if you do. One (bad) example would be defining the increment operator on a Complex number.

14.12 Extra Practice

- Implement the following operators for the Complex class (or explain why they cannot or should not be implemented). Think about whether they should be non-member, member, or friend.

```cpp
operator* operator== operator!= operator<
```