CSCI-1200 Data Structures — Fall 2020
Lecture 18 — Trees, Part 11

Review from Lecture 17
e Binary Trees, Binary Search Trees, & Balanced Trees
e STL set container class (like STL map, but without the pairs!)
e Finding the smallest element in a BST.
Today’s Lecture
e Overview of the ds_set implementation

e Exercises: begin and find and destroy_tree

A very important ds_set operation: insert

In-order, pre-order, and post-order traversal

Breadth-first and depth-first tree search

e ... and more Big O Notation practice!

17.12 Remaining Exercise from Last Lecture

template <class T> class TreeNode {
public:
TreeNode() : left(NULL), right(NULL) {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL) {}
T value;
TreeNodex*x left;
TreeNode* right;
};

2. Write a function to count the number of odd numbers stored in a binary tree (not necessarily a binary search
tree) of integers. The function should accept a TreeNode<int> pointer as its sole argument and return an

integer. Hint: think recursively!

18.1 ds_set and Binary Search Tree Implementation

e A partial implementation of a set using a binary search tree is in the code attached. We will continue to study

this implementation in tomorrow’s lab & the next couple lectures.

e The increment and decrement operations for iterators have been omitted from this implementation. Next

lecture we will discuss a couple strategies for adding these operations.

e We will use this as the basis both for understanding an initial selection of tree algorithms and for thinking

about how standard library sets really work.

18.2 ds_set: Class Overview

e There is two auxiliary classes, TreeNode and tree_iterator. All three classes are templated.

The only member variables of the ds_set class are the root and the size (number of tree nodes).

The iterator class is declared internally, and is effectively a wrapper on the TreeNode pointers.

— Note that operator* returns a const reference because the keys can’t change.

— The increment and decrement operators are missing (we’ll fill this in next lecture!).

e The main public member functions just call a private (and often recursive) member function (passing the root

node) that does all of the work.

destructor must be provided.

ds_set<T>

root:
size: 8 Node<T>

Because the class stores and manages dynamically allocated memory, a copy constructor, operator=, and

tree_iterator<T>

Node<T>

v: 25
I: NULL 1: NULL

v: 10 V:
I NULL r: NULL I: NULL r1:

18.3 Exercises

1. Provide the implementation of the member function ds_set<T>::begin. This is essentially the problem of

finding the node in the tree that stores the smallest value.

2. Write a recursive version of the function find.

3. Write the ds_set: :destroy_tree private helper function.

18.4 Insert

e Move left and right down the tree based on
comparing keys. The goal is to find the
location to do an insert that preserves the
binary search tree ordering property.

e We will always be inserting at an empty
(NULL) pointer location.

e Exercise: Why does this work? Is there
always a place to put the new item? Is there
ever more than one place to put the new
item?

ds_set<T>
root:

size: 8 Node<T>

Node<T>

Node<T>
vi 25

! NULL r: NULL

Node<T> Node<T>

v: 10 v 17
I: NULL 1: NULL I: NULL 1: NULL

o IMPORTANT NOTE: Passing pointers by reference ensures that the new node is truly inserted into the tree.

This is subtle but important.

e Note how the return value pair is constructed.

o Exercise: How does the order that the nodes are inserted affect the final tree structure? Give an ordering
that produces a balanced tree and an insertion ordering that produces a highly unbalanced tree.

18.5 In-order, Pre-order, and Post-order Traversal

e One of the fundamental tree operations is “traversing” the nodes in the tree and doing something at each node.
The “doing something”, which is often just printing, is referred to generically as “visiting” the node.

e There are three general orders in which binary trees are traversed: pre-order, in-order and post-order.

e These are usually written recursively, and the code for the three functions looks amazingly similar.

e Here’s the code for an in-order traversal to print the contents of a tree:

void print_in_order (ostream& ostr, const TreeNode<T>* p) {

if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p—>right);
¥
}

e Draw an exactly balanced binary search tree with the elements 1-7:

e The traversals for tree you just drew are:

— In-order: 123 (4) 567
— Pre-order: (4) 213 657
— Post-order: 1 3 2 576 (4)

e Now modify the print function above to perform pre-order and post-order traversals.

e What is the traversal order of the destroy_tree function we wrote earlier?

18.6 Depth-first vs. Breadth-first Search

e We should also discuss two other important tree traversal terms related to problem solving and searching.

— In a depth-first search, we greedily follow links down into the tree, and don’t backtrack until we have hit
a leaf.
When we hit a leaf we step back out, but only to the last decision point and then proceed to the next leaf.
This search method will quickly investigate leaf nodes, but if it has made “incorrect” branch decision early
in the search, it will take a long time to work back to that point and go down the “right” branch.

— In a breadth-first search, the nodes are visited with priority based on their distance from the root, with
nodes closer to the root visited first.

In other words, we visit the nodes by level, first the root (level 0), then all children of the root (level 1),
then all nodes 2 links from the root (level 2), etc.

If there are multiple solution nodes, this search method will find the solution node with the shortest path
to the root node.

However, the breadth-first search method is memory-intensive, because the implementation must store all
nodes at the current level — and the worst case number of nodes on each level doubles as we progress down
the tree!

e Both depth-first and breadth-first will eventually visit all elements in the tree.

e Note: The ordering of elements visited by depth-first and breadth-first is not fully specified.

— In-order, pre-order, and post-order are all examples of depth-first tree traversals.
Note: A simple recursive tree function is usually a depth-first traversal.

— What is a breadth-first traversal of the elements in our sample binary search tree above?

18.7 General-Purpose Breadth-First Search/Tree Traversal

e Write an algorithm to print the nodes in the tree one tier at a time, that is, in a breadth-first manner.

e What is the best/average/worst-case running time of this algorithm? What is the best/average/worst-case
memory usage of this algorithm? Give a specific example tree that illustrates each case.

{

! (T+yadep ‘2139T<-d ‘13s0)o213 sAemapTs jutad
f,u\, >> onea<-d >> 13S0
E w >> T3S0 (T++ ‘{yadsp>T {0=T 3uT) I0F
! (1+yadep ‘3uybrta<-d ‘x3so)eex13 shemepts utad
} (d) 3IT
} 3suod (yadep 3uTr ‘d (OPONSSIL JISUOD ‘I3JSO RBWESIISO: :p3S) o913 sAemspTs™ quTad pToa
{

! (quybTtac-d ‘x3s0)aepao uT 3utad
fuu\, >> enfea<-d >> 13s0
£ (3F9T<-d ‘x3so)aspao uTl 3utad
}o(d) 3T
v 3IsSuod AQ xOPONS2I] 3JIsuod \HMMO RWESI3S0 UUvawﬂHO|EH|UEHHQ PTOA
{ /x 0Z ® 6T @an3097 UT pojuswaTduI x/ } (d3 xSPONSSIL ‘SnTea” Asy 33SU0D I)SseiIs 3JuUT
{

! (osTeI ‘(d)Ia03eI93T)<T00Q‘I03RIS}T>ITed: :P3IS uINlSI
osT°®
£ (2ybta<-d ‘entea A93) 1I9SUT uanilsx
(enTea<-d < oanTea Asy) IT OST®
! (339T<-d ‘snTea”A93) 3ISSUT uanilex
(enTea<-d > entea Asy) IT OST®
{
!{(enx1 “(d)I023BI9]T)<T00q‘1031RIS]T>ITRd: :PIS UINIDI
{447 9ZTS<-STY2
! (onTea Ao3) SpoNSSIL MaU = d
}o(di) 3T
szejurod juszed urejurew » jr0oddns 03 UOTSTA®I pedu [[TM :HION //
} (d nmyopON®®Il ‘onTea” A8y BRI 3ISUOD) }ISSUT <[00 ‘I103eI9]3T>ITed: :pP3s
{ /x 8T @2an3doeT uTr pajuswardw] 5,/ } (d x9PONSSII ‘SnTea A9y 3] 3ISUOD)PUTI I0JRIST

{

/x 8T @injoeT ur pojuawsTdul x/ } (d x9pONe®®1l)9921]1 A0oIlSsp pPTOA
{ /x 0T qeT uT pojusweaTdwI x/ } (200I PTO xSPONSSIL) o913 AdOD 4SPONSSIL
SNOIIONNA ¥AJTHH HIVAIYd //

{TezTs 3jut

{73001 4OpPONSDIL

NOIIVINZSHYdHAY //
:o3eatad

{ ?(TTIAN)I03eIS]T uIN3IdI } 3JSUOD ()pus I03eI=S]T
{
! (d) z03e193T uInlaI
{339T<-d = d (339T<-d) oTTUM
{73001 = d x9pPONSSIL
£ (TIAN) 103eIS3T uIN3I®x (T 300I{) IFT
} 3suod ()uTbeq x03BIS]T
SYOIVYALI //

{(0* 3001 /13150) 9917 sAemepTs quTad } 3ISUOD (IQSO BWEDIISO: :pP3IS) o211 sAemspTs utad proa
{
/13S0 uanj3sax
{(T300a's ‘13s0)Ia9pI0o UT JuTad-'s
} (S 3<I>39s7Sp 3SuUOD ‘I3SO RJWEDIJSO::pP3S) >>103eI5d0 RWESIJSO: :P3IS PUSTIT
ONIINI¥d ¥ INdInNo //

['PIISAU QTO9 39S Sp

{ #(T300x ‘onTea A9y)oOseIS uUIN3IDI } (SnTeA ASY 33SUOD])SSeIS JUT

(T300x1 ‘onTea A9Y) 3ISSUT uUIN3IdI } (9nTea A9y 33SUOD 1) JISSUT <T0OQ ‘I03eI=3T>IaTed: :p3s
{ {(T700x1 ‘enTeA A9Y)pPUTI uxnldx } (onTea A9y 3L 3ISUOD)PUTI I03eIS]T

ASYYd ® I¥ASNI ‘ANIFL //

{ !{79zZTs uan3i®dx } 3SUOD ()SZTS 3JUT

{ /x p@33TWwo uorjejusweTdwT 5/ } (PTO 3<L>318S Sp 3Isuod)=103erado 338S SpP
{ !{(T300x)e213 A0I3SOP<-STY3 } ()3ISs”sp_
(TozTs pTO) " 92ZTS (PTO 3<I>38S” Sp 38UOD) 39S~ SP
{} TozTs ‘(TIAN) 3001 () 3°s™sp

{ {(T300x1°pT0)e21]1 AdoO<-STY3l = ~ 3001 }

H
{~x13d yopoONSSIL
uorjejusseidex //

:o3eatad
{ {dwel uanidx ! (STUIy)-—— ! (STYly)dwol I030IS]T } (3UT)--I03RI9dO I103BIDIT
{ /x pe33TWOo uorjpjusweTdWT x/ } ()--I03eIado ® I03RIS]T
{ !dwel uanizax ! (STYUIx)++ ¢ (STUIy)dwel I03RISIT } (3UT)++303eI9d0 I03BISIT
{

{STY34 uanzex

/x 6T ® 8T ©In309T UT pojuawaTdwl ¥ passnosIp x/ } ()++103erado 3 103eI93T

{ #712d-3bx1 =; “13d uanzex } (21H6x1 ®mI031RIS]T 3ISUOD) =;Iro3erado ToOgq
{ 13d 361 == “13d uanzsx } (3Hx1 3I03RIS]T 3FISuod) ==103eIado TOOq
paiemzoraybrexls oie siojersdo suorxedwod //

{ fenTea<-"13d uan3zax } 3suod () yI03EI=2dO %] 3JFSUOD

JTojurod 8y3 e onTeA @yj O3 SS800P JUPISUOD SOATH yxrojzexado //
{ {sTy3ly uanizsx !Tx13d'p1o = T13d } (PTO 3I03RIS]T 3Isuod)=103eI12dO RI0JRISIT

{} (d)7x3d : (d xoOpPON®SIL)I03RISIT
{} (T1AN) " x3d : ()I03eI=®3lT
:ot1qnd

} I03eI123T SSETO
SSYTO ¥OIVYHLI HJON FAIL //
//

/quszed yepoNeoIl //

JusweIDep » JUSWSIDOUT I03eI2]T JO uoTjPjusweTdwT MOTTE 03 Aem auo //
1qybTI yOpPONSSIL

{3197 xSpONSSIL

fsntea 1
{} /x(TTAN) 3uazed “y/ (TIAN) IUDTI ‘ (TTIAN) 3FST ‘(3ITUT)SnTea : (JTUT 3L ISUOD) SPONSDIL
{} /x(T10N) 3uszed “yx/ (TION) IUBTI ‘ (TIAN) 3FST : () SPONSSIL

:otTand

} opoN®®al SseTd
SSYTO HAON HAYL //
//

:otTand

} 19s7sp sseTo

<1 sseTo> o3erdwsl

(ATXAIS AIVNYAITY) SHSSVYID ¥OIVYALI HAYI ¥ HAON HAYI JAISAN HIIM —-- SSYID IHS Sd //
/7

90:1¥:C1
0T/€0/11

	Remaining Exercise from Last Lecture
	ds_set and Binary Search Tree Implementation
	ds_set: Class Overview
	Exercises
	Insert
	In-order, Pre-order, and Post-order Traversal
	Depth-first vs. Breadth-first Search
	General-Purpose Breadth-First Search/Tree Traversal

