CSCI-1200 Data Structures — Fall 2020
Lecture 21 — Hybrid / Variant Data Structures

Announcements: Test 3 Information
e Thursday, November 19th from 6:55-8:45pm America / New York.
e Coverage: Lectures 1-22, Labs 1-12, HW 1-8.

e Practice problems from previous exams are available on the course website. Solutions to the problems will be
posted on Wednesday morning,.

e The procedures will be the same as for Test 1 and Test 2.
See: https://www.cs.rpi.edu/academics/courses/fall20/cscil1200/lectures/05_memory.pdf and
https://www.cs.rpi.edu/academics/courses/fall20/cscil200/lectures/13_problem_solving_II.pdf

e We will all take the test at the same time, with a strict 1 hour 50 minute time limit.

— You may start up to 15 minutes early (to spread the load on Submitty).
But you must make your final submission no more than 1 hour 50 minutes
after you first loaded the test page.

— Computer Science 1 will be taking their third exam at the same time.
Save and submit your work every 15-20 minutes. You can and should “submit” multiple times!

— You will lose 1 point per minute over your time limit (unless verified excuse).

— If you have a personal emergency or techmnical difficulty, complete and submit the test as fairly and
promptly as possible, then email ds_instructors@cs.rpi.edu.

e Diagram Drawing

— The test may include a problem that requires you to draw a diagram.

— Have paper and a pencil handy when you sit down to take the test. You must finish drawing the diagram
during the 1 hour 50 minute exam period.

— The diagram upload and submission (including scanning/photographing/resizing) will be a separate Submitty
submission with an additional, more generous time deadline.

e No internet references, no communication.
e Closed book, closed notes, except for 2 pages (equivalent) of prepared notes.

e Post Test Interview

— Early next week ALL STUDENTS will fill out a Submitty form to indicate availability for the interview
on Thursday evening or Friday morning or Friday afternoon.

— Approximately 30% of all students will be selected for post-exam interview.
— Even if you were interviewed for Test 1 or Test 2, you may be selected again for Test 3, or the Final Exam.
Review from Lecture 20
e Some more practice exercises with trees & Big O Notation
e Implement erase from a ds_set

e Limitations of our ds_set implementation, brief intro to red-black trees

Today’s Lecture

e Some variants on the classic data structures...

https://www.cs.rpi.edu/academics/courses/fall20/csci1200/lectures/05_memory.pdf
https://www.cs.rpi.edu/academics/courses/fall20/csci1200/lectures/13_problem_solving_II.pdf

21.1 The Basic Data Structures

This term we’ve covered a number of core data structures. These structures have fundamentally different memory
layouts. These data structures are classic, and are not unique to C++.

e array / vector

linked list
e binary search tree

e hash table (Lectures 22 & 23, Lab 12, Homework 9)

binary heap / priority queue (Lecture 25, Lab 13, Homework 10)

21.2 A Few Variants of the Basic Data Structures

Many variants and advanced extensions and hybrid versions of these data structures are possible. Different applications
with different requirements and patterns of data and data sizes and computer hardware will benefit from or leverage
different aspects of these variants.

This term we’ve already discussed / implemented a number of data structure variants:

e single vs. doubly linked lists
using more memory can improve convenience and running time for key operations

e dummy nodes or circular linked lists — can reduce need for special case / corner case code
e explicitly storing data history (HW3 undo array)

e additional pointers facilitate alternate navigation (HW5 multi-linked links)

e 2D arrays/vectors or 2D linked grid/matrix (various practice problems)

e BVH spatial data structure (HW8) — organizing 2D/3D geometric data

e red-black tree — an algorithm to automatically balance a binary search tree

In the remaining lecture & homeworks we’ll cover several more variants...
e hash table: separate chaining vs open addressing — reduce memory and avoid pointer dereferencing
e stack and queue — restricted/reduced(!) set of operations on array/vector and list
e priority queue with backpointers (Homework 10) — when you need to update data already in the structure

o leftist heap (might mention this in Lecture 25...)

We'll discuss just a few additional variants today.
e unrolled linked list
e skip list
e quad tree
e trie (a.k.a. prefix tree)

o suffix tree

The list above is just a sampling of the possible variety of hybrid / variant data structures!

21.3 Unrolled Linked List - Overview

e An unrolled linked list data structure is a hybrid of an array / vector and a linked list. It is very similar to a
standard doubly linked list, except that more than one element may be stored at each node.

e This data structure can have performance advantages (both in memory and running time) over a standard
linked list when storing small items and can be used to better align data in the cache.

e Here’s a diagram of an unrolled linked list:

UnrolledL L <int>

list_iterator<int>

e v N\ e v N e N\
Node<int> Node<int> Node<int>
prev: NULL | prev: | prev:
num_elements. 6 num_elements: 5 num_elements. 2
dements: |10 [11|12[13]14 15| dements [16[17[18[20[21] | dements:[22]23] | [[|
| next: P> next: TP next: NULL)

e Each Node object contains a fized size array (size = 6 in the above example) that will store 1 or more elements
from the list. The elements are ordered from left to right.

e From the outside, this unrolled linked list should perform exactly like an STL list containing the numbers 10
through 23 in sorted order, except we’ve just erased '19’. Note that to match the behavior, the 1ist_iterator
object must also change. The iterator must keep track of not only which Node it refers to, but also which
element within the Node it’s on. This can be done with a simple offset index. In the above example, the
iterator refers to the element “20”.

e Just like regular linked lists, the unrolled linked list supports speedy insert and erase operations in the middle
of the list. The diagram above illustrates that after erasing an item it is often more efficient to store one fewer
item in the affected Node than to shift all elements (like we have to with an array/vector).

e And when we insert an item in the middle, we might need to splice a new Node into the chain if the current
Node is “full” (there’s not an empty slot).

21.4 Unrolled Linked List - Discussion

e Say that Foo is a custom C++ class that requires 16 bytes of memory. If we create a basic doubly-linked list
of n Foo objects on a 64 bit machine, how much total memory will we use? Assume that each blob of memory
allocated on the heap has an 8 byte header.

e Now instead, let’s store n booleans in a basic doubly-linked list. How much total memory will that use? Assume
that heap allocations must round up to the nearest 8 byte total size.

e Finally, let’s instead use an unrolled linked list. How many boolean values items should we store per Node?
Call that number k. How much total memory will we use to store n booleans? What if the nodes are all 100%
“full”? What if the nodes are on average 50% “full”?

21.5 Skip List - Overview

e Consider a classic singly-linked list storing a collection of n integers in sorted order.

head
data 5 25 30 31 42 58 62 69
next > > > > > - -

e If we want to check to see if 42’ is in the list, we will have to linearly scan through the structure, with O(n)
running time.

e Even though we know the data is sorted... The problem is that unlike an array / vector, we can’t quickly jump
to the middle of a linked list to perform a binary search.

e What if instead we stored a additional pointers to be able to jump to the middle of the chain? A skip list stores
sorted data with multiple levels of linked lists. Each level contains roughly half the nodes of the previous level,
approximately every other node from the previous level.

head
data 5 25 30 31 42 58 62 69
0 > » » > > » > >
1 > > > >
2 > >

e Now, to find / search for a specific element, we start at the highest level (level 2 in this example), and ask if
the element is before or after each element in that chain. Since it’s after ’31’, we start at node ’31’ in the next
lowest level (level 1). ’42’ is after '31°, but before ’58’, so we start at node '31’ in the next lowest level (level
0). And then scanning forward we find '42’ and return ’true’ = yes, the query element is in the structure.

21.6 Skip List - Discussion

e How are elements inserted & erased? (Once the location is found) Just edit the chain at each level.

e But how do we determine what nodes go at each level? Upon insertion, generate a top level for that element
at random (from [0,log n] where n is the # of elements currently in the list ... details omitted!)

e The overall hierarchy of a skip list is similar to a binary search tree. Both a skip list and a binary search tree
work best when the data is balanced.

Draw an (approximately) balanced binary search tree with the data above. How much total memory does the
skip list use vs. the BST? Be sure to count all pointers — and don’t forget the parent pointers!

e What is the height of a skip list storing n elements? What is the running time for find, insert, and erase in
a skip list?

e Compared to BSTs, in practice, balanced skip lists are simpler to implement, faster (same order notation, but
smaller coefficient), require less total memory, and work better in parallel. Or maybe they are similar...

21.7 Quad Tree - Overview

The quad tree data structure is a 2D generalization of the 1-dimensional binary search tree. The 3D version is called
an octree, or in higher dimensions it is called a k-d tree. These structures are used to improve the performance
of applications that use large spatial data sets including: ray tracing in computer graphics, collision detection for
simulation and gaming, motion planning for robotics, nearest neighbor calculation, and image processing.

The diagrams below illustrate the incremental construction of a quad tree. We add the 21 two-dimensional points
shown in the first image to the tree structure. We will add them in the alphabetical order of their letter labels. Each
time a point is added we locate the rectangular region containing that point and subdivide that region into 4 smaller
rectangles using the z,y coordinates of that point as the vertical and horizontal dividing lines.

input points after adding the 1°' point after adding the 2" point
|
3 i
G K |
F i
c \
- B-———————-
u I
H L |
! 1
A
0
N R
S
D
E
P
Q U
T
after adding the 3"¢ point after adding 9 points after adding all 21 points
! | ro | o L
| i ol i [N S . S
i i e i T et N SR B S
| e Pl | e Pl] o
T e R Cemmmmmmnne I S
---------- S] N | s S - rT
| i R i T I S
| | R N i e el I N B L
| | A S— i R R . r
i i i i i 1
| | | I R
| i i --0—-l 1 1
| i v I T
| i i L [|8
----------- D i R s Tl I I U
T Ennmmmmen- | T Bt
| | R gy
| i i [R I
i i i i | i

Each node in the structure has 4 children. (Or 8 children if we’re making a 3-dimensional octree). Here’s a ’sideways’
printing of the finished tree structure from the example above:

A (20,10)
B (10,5)
F (5,3)
G (15,2) 21.8 Quad Tree - Discussion
H (4,7)
I (14,8)
C (30,4)
J (25,1)
K (35,2)
L (26,7)
M (36,6)
D (11,15)
N (3,13)
0 (16,12)
P (4,17) e Can we easily erase an item from the quad tree? What if it’s not a leaf node?
Q (15,18)
E (31,16)
R (25,13)
S (37,14)
T (24,19)
U (36,18)

e How does the order of point insertion affect the constructed tree?
What if we inserted the point labeled "B’ first, and the point labeled A’ second?

e Alternately (in fact, more typically), the quad tree / octree / k-d tree may simply
split at the midpoint in each dimension. In this way the intermediate tree nodes don’t
store a data point. All data points are stored only at the leaves of the tree.

21.9 Trie / Prefix Tree - Overview

e Next up, let’s look at alternate to a map or hash map for storing key strings and an associated wvalue type.
NOTE: We'll cover the classic hash table in lecture next week!

e In a trie or prefix tree, the key is defined not by storing the data at the node or leaf, but instead by the path of
to get to that node. Each edge from the root node stores one character of the string. The node stores the value
for the key (or NULL or a special value, e.g., -1’; if the path to that point is not a valid key in the structure).

key | value

a 15

i 11

in 9

N inn 5

tea 3

> ted 4
ten 12

n to 7

e Lookup in the structure is fast, O(m) where m is the length (# of characters) in the string. A hash table has
similar lookup (since we have to hash the string which generally involves looking at every letter). If m << n,
we can say this is O(1).

21.10 Trie / Prefix Tree - Discussion

e What is the worst case # of children for a single node? What are the member variables for the Node class?

e Uunlike a hash table, we can iterate over the keys in a trie / prefix tree in sorted order.
Exercise: Implement the trie sorted-order iterator (in code or pseudocode) and print the table on the right.

21.11 Suffix Tree - A Brief Introduction...

e Instead of only encoding the complete string when walking from
root to leaf... let’s store every possible substring of the input. .
a na
e This toy example stores ’banana’, and all suffix substrings of /bannN
'banana’. Each leaf node stores the start position of the substring . n .

within the original string. The ’$’ character is a special terminal
character.

na

e Suffix trees clearly require much more memory than other data
structures to store the input string, but do so to gain performance

on certain operations.... $ $
na
Suffix trees help us efficiently find the longest common substring —
in linear time. This is an important problem in genome sequencin
p p g q g

and computational biology.

e (lever algorithms have been developed to efficiently
construct suffix trees.

. and we're certainly out of time for today. There are many more wonderful data structures to
explore. This semester you have learned the tools to study new structures, compare and contrast
operation efficiency and memory usage of different structures, and to develop your own data
structures for specific applications.

	The Basic Data Structures
	A Few Variants of the Basic Data Structures
	Unrolled Linked List - Overview
	Unrolled Linked List - Discussion
	Skip List - Overview
	Skip List - Discussion
	Quad Tree - Overview
	Quad Tree - Discussion
	Trie / Prefix Tree - Overview
	Trie / Prefix Tree - Discussion
	Suffix Tree - A Brief Introduction...

