CSCI-1200 Data Structures — Fall 2021
Homework 8 — Quad Trees & Tree Iteration

In this assignment you will build a custom data structure named QuadTree. The data structure you will
build for this homework is similar to the classic quad tree, octree, k-d tree, and binary space partition
data structures from computational geometry. These structures are used to improve the performance of
applications that use large spatial data sets including: ray tracing in computer graphics, collision detection
for simulation and gaming, motion planning for robotics, nearest neighbor calculation, image processing,
and many, many others. Our QuadTree implementation will share some of the framework of the ds_set
implementation we have seen in lecture and lab. You are encouraged to carefully study that implementation
as you work on this homework.

The diagrams below illustrate the incremental construction of the QuadTree data structure. In this example,
we add the 21 two-dimensional points shown in the first image to the tree structure. We will add them in
the alphabetical order of their labels. Each time a point is added we locate the rectangular region containing
that point and subdivide that region into 4 smaller rectangles using the z,y coordinates of that point as the
vertical and horizontal dividing lines.

Each 2D coordinate (x,y) is stored in the Point class. In these plots (0,0) is in the upper left corner. The x
axis runs horizontally, with increasing values to the right. The y axis runs vertically with increasing values
in the downward direction.

input points after adding the 1! point after adding the 2"¢ point
|
3 |
F ¢ K I
B e S S
M |
H L |
I |
. |
0
N R
S
D
E
P
Q v
| T |
| |
after adding the 3"? point after adding 9 points after adding all 21 points

|
|
|
|
|
__________ - M
I
|
|

Like an STL map and STL set, inserting a new Point into the QuadTree or querying (using find) whether
a Point is already in the structure is fast, and can be completed in O(log n), where n is the number of
Points in the tree. However, unlike the set and map structures which are based on a binary tree, having
two subtrees per node, the QuadTree has 4 children at each node!

The data in our QuadTree can be visualized using two different output routines, plot and print_sideways.
You will also implement two different methods for iterating over the tree: depth-first (specifically pre-order)
or breadth-first. To do this, you will write two helper classes DepthIterator and BreadthIterator which
will be typedef-ed within the QuadTree class.

Here is a diagram showing the relationships between the different classes you will implement for this
assignment. Be sure to draw plenty of your own diagrams as you work, and be prepared to show these
diagrams when you come to office hours or ALAC tutoring to ask for help on the assignment.

(QuadTree<number_type,label_type> W

Node<number_type,label_type>* root_: (Depthlterator<number_type,label_type> W

unsigned int size_: 3 kNode<number_type,1abel_type>* ptr: ‘ J

Y
-
Node<number_type,label_type>

Point<number_type> pt: | Point<number_type> w

number_type x: 20
number_typey: 10

label_type label: A

Node<number_type,label_type>* children[4]: ; ;

| Node<number_type,label_type>* parent: /

-

N / \ J
e N M

Node<number_type,label_type> Node<number_type,label_type>
Point<number_type> pt: | Point<number_type> | Point<number_type> pt: | Point<number_type> |

number_type x: 10 number_type x: 30

number_typey: 5 number_typey: 4
label_type label: B label_type label: C
Node<number_type,label_type>* children[4]: ZZZ]Z] Node<number_type,label_type>* children[4]: ZZZ]Z]
Node<number_type,label_type>* parent: ‘ Node<number_type,label_type>* parent: ‘

/ (S

J

Note that the QuadTree is templated over two types, the number_type and the label_type. In this example,
the number type is int and the label type is char. This is the detailed internal memory representation after
adding the first 3 points in the example on the previous page. We also show a sample DepthIterator object
initially attached to the root node of this tree. You should follow this diagram exactly, using these specific
class and member variable types and names and placeholder template type names. We do not present the
details of the BreadthIterator class in this diagram. You may design the internal representation of that
class to complete the specified functionality.

Implementation

Your task for this homework is to implement the structure diagrammed above. We recommend that you
begin your implementation by following the structure of the ds_set class we studied in lecture and lab. You
will need to make a number of significant changes to the code, but the overall design: a “manager” class
(QuadTree), the Node class, and tree_iterator classes is similar.

We provide the Point class and the implementation of the two QuadTree member functions for printing: plot
and print_sideways. You will build the rest of your implementation around this starter code. Remember
that because this is a templated class, you will not separate the implementation into .h and .cpp files.
Keep all of your implementation in a single file named quad_tree.h, but make sure it is well-organized and
appropriately commented.

The provided code in main.cpp illustrates the basic functionality of the QuadTree class including the
QuadTree functions: size, insert, find, height, begin, end, bf_begin, and bf_end, and iterator functions:
operator++ (both pre- and post- increment), operator* (dereference), getLabel, and getDepth. Study
these examples carefully to deduce the expected argument and return types of the functions. As this is
a class with dynamically-allocated memory, you will also need to implement, test, and debug the copy
constructor, assignment operator, and destructor. Submitty will compile and run your quad_tree.h file

with the instructor’s solution to test your implementation of these functions. It will test your code with Dr.
Memory and your program must be memory error and memory leak free for full credit.

We encourage you to work through the test cases in the provided main. cpp step-by-step, uncommenting and
debugging one test at a time. The provided test cases do not adequately test all corner cases, so as you work,
add your own test cases to the student_tests function. Be sure to test your templated implementation
with other number types (e.g., float, double) and other label/data types (e.g., STL string, int, etc.). Note
that the ASCII art plot function is intended only for debugging use on modest-sized examples with small
non-negative integers and char labels. Furthermore, the plot function assumes that no two points have the
same x coordinate or the same y coordinate.

Extra Credit: Tree Balancing

How does the point insertion order affect the shape of the resulting QuadTree object? What are specific
examples of the worst case and best case? Discuss in your README.txt file. For extra credit, you can
implement a function named BalanceTree to re-order a point collection before inserting the data into the
tree to improve the quality of the resulting tree. QuadTree quality can be defined with various metrics
including: minimal tree height, more equal partitioning of data into the 4 subtrees (approximately the same
number of elements in each child tree), and rectangular subregions that have approximately equal area or
that have more equal ratio of height to width. Certainly for some input collections you cannot simultaneously
satisfy all of these properties! You may define how to prioritize these metrics. Be sure to write challenging
test cases that show off your implementation.

Performance

Assuming our tree holds n points that are well-distributed and have been inserted into the structure in a
random order to produce a generally well balanced tree, what is the Big O Notation for running time and
the Big O Notation for memory usage of the different operations of the QuadTree? Put your answers and a
short justification for each answer in your README. txt file.

Homework Submission

Use good coding style and detailed comments when you design and implement your program. You must do
this assignment on your own, as described in the “Collaboration Policy & Academic Integrity” handout. If
you did discuss this assignment, problem solving techniques, or error messages, etc. with anyone, please list
their names in your README. txt file.

http://www.cs.rpi.edu/academics/courses/fall21/csci1200/academic_integrity.php

