
CSCI-1200 Data Structures — Fall 2021
Homework 9 — Constellation Hash Table

In this assignment we will search the stars of the night sky for known constellations. This is a challenging
problem and you are welcome to use any data structures, algorithms, and techniques we have learned this
semester. We hope that you experiment with using hash tables as one tool for this problem.

Below are three of the 88 modern constellations recognized by the International Astronomical Union (IAU).
From left to right they are Ursa Minor (also known as the Little Dipper), Ursa Major (a subset of this
constellation, an asterism, is also popularly known as the Big Dipper), and Orion. For clarity in these initial
diagrams we only draw the brightest stars that are used to form the connect-the-dots constellation diagrams.
But the night sky contains many, many more stars.

The stars are mapped to a sphere surrounding the Earth, and every star has a unique name and belongs to
exactly one of these 88 constellations. Not all stars in the constellation are used to connect-the-dots for the
diagram. In a few cases, the diagram will use a star that technically belongs to another constellation. Your
task for this assignment is to write a program that will take a synthetic image of the night sky as input,
along with a library of known constellations, and identify which portion of the night sky we are observing.
Once identified, we can draw the constellation diagram on the image and label the visible stars by name.

In the images below we visualize the same three constellations surrounded by many of their neighboring stars.
Can you connect the dots to trace the same diagrams? Note that images of the night sky are challenging to
visualize because of the high dynamic range from the inky black sky and the large range of dim and bright
stars. We approximate this imagery by drawing the brighter stars as disks with larger radii.



Finding constellations can be especially challenging because the orientation (position & rotation) of the
constellation changes with the observer’s position on the Earth and the season. Furthermore, if we used
actual photographs of the night sky, the stars might be over- or under- exposed causing us to miss some stars
completely and making measurements of relative star brightness unreliable.

The images below show some of the brightest stars from the previous visualizations, but all of these stars are
displayed with the same radius/brightness. Additionally, the images have been rotated. Can you still find
the constellations in their rotated orientations and without relying on hints from the relative star brightness?

The three stars of Orion’s belt are not as obvious when they are equal brightness to their neighbors! But we
can still find them by matching distances and angles between neighboring stars.

Program Input and Output & Command Line Arguments

Your program will take in an input file with unidentified star data – an example is shown below on the left.
Each row lists a star’s x,y position within the synthetic image, the apparent magnitude, and the constellation
& star name. The apparent magnitude is the star’s brightness as observed from Earth – note that smaller
numbers are brighter! In our input files, a value of -1 indicates that this data is unknown or unreliable. Star
names beginning with STAR are unidentified. Your task is to identify and label as many stars as you can in
this file with the correct constellation and star name.

example input.txt Your program will also take as input a library of one
or more known constellations; an example is shown
below right. In addition to the star data, the file
also contains the line segments between stars that
make the classic constellation diagram. Note that the
star names include extended ASCII characters from
the Greek alphabet. The STL string library should
handle this for you.

Ursa Minor.txt

2



Your program should search for potential matches between the
input file and library of constellations. If you cannot find a
match, your program should print “No matching constellation
found” to std::cout. If you do identify a matching constel-
lation, you should print the match to std::cout as shown below.

example stdout.txt

Your program will also revise the input file to label each
identified star with its constellation name and star name, update
the apparent magnitudes, and add the line segment information.
The updated file is saved to the specified output file name, which
is shown on the right.

example output.txt

We provide a simple stand-alone program, plot_stars.cpp compiles to plot.out, that will read the star
positions and line segments from a file (the input file, the output file, or the library constellation file) and
produce a Scalable Vector Graphics (SVG) visualization stored as an .html file. You can open this file locally
in a standard web browser (e.g., Chrome, Firefox, etc.)

Here are sample command lines for the provided plot.out and the program you will write, identify.out:

./plot.out example_input.txt example_input.html

./plot.out --draw_diagram Ursa_Minor.txt Ursa_Minor.html

./identify.out -i example_input.txt -o example_output.txt -l Ursa_Minor.txt > example_stdout.txt

./plot.out --draw_diagram --label_constellation --label_stars example_output.txt example_output.html

./identify.out -i unknown_A.txt -o out.txt -l Ursa_Minor.txt -l Ursa_Major.txt -l Orion.txt

Getting Started

We suggest you start this homework by prototyping a brute-force search solution for some of the smaller
example files. You may find that recursion is helpful! The idea is to start with a pair of stars in the input
file, compute the distance between those points, and then see if you can find a matching pair of stars in
one of the constellation library files that has the same distance. Note that when comparing floating point
numbers (either distances or angles) you don’t want to use exact equality because of coordinate rounding
errors. You’ll want to compare if the difference between the numbers is less than a small epsilon threshold
value. Can you then expand that initial match to the whole constellation?

Once you have an initial version of the program working, evaluate what part of the search is most expensive.
What data structures or algorithms can you use to improve this search? Can you use a hash table? What is
the information you will be hashing? Should you consider using a spatial data structure to accelerate nearest
neighbor queries? A grid is probably simpler than an octree or bounding volume hierarchy.

In addition to comparing distances, we can compare the angles formed between three neighboring stars. For
extra credit extend your program to handle input images that might be scaled (a.k.a. zoomed), where the
matched constellation is either smaller or larger than the example in the library.

Homework Submission

Use good coding style and detailed comments when you design and implement your program. You must do
this assignment on your own, as described in the “Collaboration Policy & Academic Integrity” handout. If
you did discuss this assignment, problem solving techniques, or error messages, etc. with anyone, please list
their names in your README.txt file.

3

http://www.cs.rpi.edu/academics/courses/fall21/csci1200/academic_integrity.php

