
CSCI-1200 Data Structures — Fall 2022
Lab 5 — Reversing Data Many Different Ways:

STL Vectors vs. STL Lists

Checkpoint 1: Reverse with STL Vector Swaps estimate: 10-20 minutes

Download this starter code:
http://www.cs.rpi.edu/academics/courses/fall22/csci1200/labs/05_lists_iterators/checkpoint1.cpp

Complete the function reverse that reverses the contents of an STL vector of integers. For example, if
the contents of the vector are in increasing order before the call to reverse_vector, then they will be in
decreasing order afterwards. For this checkpoint, use indexing/subscripting/[] on the vector, not iterators
(or pointers). You may not use a second vector or array or list.

The trick is to step through the vector one location at a time, swapping values between the first half of the
vector and the second half. As examples, the value at location 0 and the value at location size()-1 must
be swapped, and the value at location 1 and the value at location size()-2 must be swapped.

Make sure your code works with even and odd length vectors. Also add a few more tests to the main function
to make sure your code will work for the special cases of an empty vector and vectors of size 1 and 2.

Checkpoint 2: Reverse with STL List Swaps estimate: 15-30 minutes

Copy your code from Checkpoint 1 to a new file. Then, convert this code to use STL Lists instead of STL
vectors. Start by replacing ’vector’ with ’list’ everywhere. And you’ll need to replace your subscripting
with iterators. You may want to use a straightforward concept we did not discuss in lecture: a reverse
iterator. A reverse iterator is designed to step through a list from the back to the front. An example will
make the main properties clear:

std::list<int> a;

unsigned int i;

for (i=1; i<10; ++i) a.push_back(i*i);

std::list<int>::reverse_iterator ri;

for(ri = a.rbegin(); ri != a.rend(); ++ri)

cout << *ri << endl;

This code will print out the values 81, 64, 49, . . . , 1, in order, on separate lines. Observe the type for the
reverse iterator, the use of the functions rbegin and rend to provide iterators that delimit the bounds on
the reverse iterator, and the use of the ++ operator to take one step backwards through the list. It is very
important to realize that rbegin and end are NOT the same thing! One of the challenges here will be
determining when to stop (when you’ve reached the halfway point in the list). You may use an integer
counter variable to help you do this.

For this checkpoint you should not use erase, or insert, or the push or pop functions.

Note, you’ll probably need to add the keyword typename in front of your templated iterator types to un-
confuse the compiler.

typename std::list<T>::iterator itr = data.begin();

Write two versions of the function, one using the reverse iterator, and one using only the forward iterator.

To complete this checkpoint, show a TA your debugged functions to reverse STL vectors and STL lists
by element swapping. Be sure to ask your TA/mentors any questions you have about regular vs. reverse
iterators for lists and vectors.

http://www.cs.rpi.edu/academics/courses/fall22/csci1200/labs/05_lists_iterators/checkpoint1.cpp

Checkpoint 3 estimate: 30-40 minutes

Checkpoint 3, a team exercise for a group of 3 or 4 students,
will be available at the start of Wednesday’s lab.

https://submitty.cs.rpi.edu/courses/f20/csci1200/course_materials

2

https://submitty.cs.rpi.edu/courses/f20/csci1200/course_materials

