CSCI-1200 Data Structures — Fall 2025
Homework 4 — Autograding Scheduler

In this assignment we will write a program to simulate the scheduling queue that manages Submitty
autograding. Historically, the busiest time period on Submitty is Thursday evening from 11pm-midnight.
Many different courses in the Computer Science department have a common deadline of 11:59pm, and a
significant number of students of all levels are afflicted with procrastination. All data for this assignment is
synthetic, but it has been created following the typical data patterns we see each semester. Please carefully
read the entire assignment before beginning your implementation.

We have a number of dedicated high end server machines with multiple processors; however, sometimes a
spike of submissions cause a backlog and students will have to wait in a first in, first out (FIFO) queue
until sufficient processor resources are available. Students may experience a moderate time delay before their
autograding results are available. But do not worry! Due date / late days are always calculated from the
upload timestamp, not the timestamp when autograding completes.

Here is a small example of the input file, sample_jobs.txt:

23:00:09 cscil100 hw3 jonesp 1 10 9
23:00:11 cscill100 hwl leek 110 10
23:00:14 csci2600 hw3 smitha 1 60 43
23:00:18 csci2800 pl Dbakert 4 30 19
23:00:24 cscil200 hw3 hallb 1 25 23
23:00:28 ¢scil1100 hwl cookr 1 10 9

Each line of the input file is a student submission containing the upload timestamp, course name, gradeable
name, student username, number of processors needed to run the autograding, the maximum runtime in
seconds allowed for the assignment, and the actual runtime for that student’s submission (which is < the
maximum runtime). Here’s a sample command line showing how we will run your program for this assignment:

./simulate.out sample_jobs.txt 5 --algorithm single _file --visualization vis.txt --log log.txt

The visualization output file will contain an ASCII art table showing a simulated schedule for these jobs:

timestamp| processor O
23:00:00
23:00:05
23:00:10
23:00:15
23:00:20
23:00:25
23:00:30
23:00:35

processor 1 processor 2 processor 3 processor 4

2
©
=
®

COORRERHEEHENINMNNWWWWWWWWWHEWNONOOO

|

|

|
cscil100_hw3_jonesp |
cscil1100_hw3_jonesp |
csci1100_hwi_leek |
csci1100_hwi_leek |
cscil100_hwi_leek |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2600_hw3_smitha |
csci2800_pl_bakert |
csci2800_pl_bakert |
csci2800_pl_bakert |
csci2800_pl_bakert |
|

|

|

|

|

|

|

|

csci2800_p1_bakert
csci2800_pl_bakert
csci2800_pl_bakert
csci2800_pl_bakert

csci2800_p1_bakert
csci2800_p1_bakert
csci2800_p1_bakert
csci2800_pl_bakert

csci2800_pl_bakert
csci2800_p1_bakert
csci2800_p1_bakert
csci2800_pl_bakert
cscil1200_hw3_hallb
cscil1200_hw3_hallb
cscil200_hw3_hallb
cscil200_hw3_hallb
cscil1200_hw3_hallb
cscil1100_hwl_cookr

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cscil100_hwl_cookr |
|

N
@
o
Pt
-
S

The visualization contains a vertical column for every processor available on the Submitty system. Each row
of the output represents a 5 second time interval. Each cell of the table indicates which assignment is being
graded by the processor during that interval, or the cell is empty if the processor is idle.

The command line and visualization above demonstrate the simplest scheduling algorithm you will implement,
“single file”. With this algorithm the system will only grade one student at a time. The autograding
will always be assigned to processor 0. The other system processors will only be used if the assignment
specifies that it should be run in parallel on multiple processors. For this assignment, we will require that an
autograding assignment that uses multiple processors must run on adjacent processors. So an autograding
job that needs 4 processors must run on processors 0,1,2&3, or 1,2,3&4, or 2,3,4&5, etc.

Your program will also produce a log file that contains the scheduling details that correspond to the ASCII
art visualization. The log file is ordered by finish time:

cscill00_hw3_jonesp upload: 23:00:09 started grading: 23:00:10 finished grading: 23:00:19 wait_time: 1 sec grading time: 9 sec
cscil100_hwl_leek upload: 23:00:11 started grading: 23:00:20 finished grading: 23:00:30 wait_time: 9 sec grading_time: 10 sec
csci2600_hw3_smitha upload: 23:00:14 started grading: 23:00:35 finished grading: 23:01:18 wait_time: 21 sec grading_time: 43 sec
csci2800_p1_bakert upload: 23:00:18 started grading: 23:01:20 finished grading: 23:01:39 wait_time: 62 sec grading_time: 19 sec
cscil200_hw3_hallb upload: 23:00:24 started grading: 23:01:40 finished grading: 23:02:03 wait_time: 76 sec grading_time: 23 sec
cscil100_hwl_cookr upload: 23:00:28 started grading: 23:02:05 finished grading: 23:02:14 wait_time: 97 sec grading_time: 9 sec

Your program will also print simple summary statistics about the simulation to std: :cout:

number of jobs: 6
scheduling algorithm: single_file

data structure: std::list
time to empty queue: 140 sec
average waiting time: 44.33 sec

maximum waiting time: 97 sec
idle percentage: 75.71 %
simulation running time: 0.00 sec

Additional Scheduling Algorithms

If the command line instead specifies ——algorithm first_available, the system will run the first item in
the queue on the lowest number processor(s) that are idle. If sufficient resources are not available for the
first job in the FIFO queue, the system will wait until other jobs finish and the necessary resources become
available. Here is the output of the earlier example using the “first available” algorithm:

timestamp| processor 0 | processor 1 | processor 2 | processor 3 | processor 4 | queue
23:00:00 | | | | | | 0
23:00:05 | | | | | | 0
23:00:10 | cscil100_hw3_jonesp | | | | | 0
23:00:15 | cscil100_hw3_jonesp | cscil100_hwi_leek | csci2600_hw3_smitha | | | 0
23:00:20 | | csci1100_hwl_leek | csci2600_hw3_smitha | | | 1
23:00:25 | | csci1100_hwi_leek | ¢sci2600_hw3_smitha | | | 2
23:00:30 | | | csci2600_hw3_smitha | | | 3
23:00:35 | | | csci2600_hw3_smitha | | | 3
23:00:40 | | | csci2600_hw3_smitha | | | 3
23:00:45 | | | ¢sci2600_hw3_smitha | | | 3
23:00:50 | | | ¢sci2600_hw3_smitha | | | 3
23:00:55 | | | ¢sci2600_hw3_smitha | | | 3
23:01:00 | csci2800_pl_bakert | csci2800_p1_bakert | csci2800_p1_bakert | csci2800_p1_bakert | csci1200_hw3_hallb | 1
23:01:05 | c¢sci2800_pl_bakert | csci2800_p1_bakert | csci2800_p1_bakert | csci2800_p1_bakert | csci1200_hw3_hallb | 1
23:01:10 | csci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | cscil200_hw3_hallb | 1
23:01:15 | csci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | cscil200_hw3_hallb | 1
23:01:20 | cscil100_hwl_cookr | | | | csci1200_hw3_hallb | 0
23:01:25 | cscil100_hwi_cookr | | | | | 0
23:01:30 | | | | | | 0

We now see that the first 3 students (jonesp, leek, and smitha) can run at the same time on different
processors. Since the 4th student (bakert) needs 4 adjacent processors, this job cannot be started until the
job running on processor 2 finishes. Here is the log file from this run:

cscill00_hw3_jonesp upload: 23:00:09 started grading: 23:00:10 finished grading: 23:00:19 wait_time: 1 sec grading_time: 9 sec
cscil100_hwi_leek upload: 23:00:11 started grading: 23:00:15 finished grading: 23:00:25 wait_time: 4 sec grading_time: 10 sec
csci2600_hw3_smitha upload: 23:00:14 started grading: 23:00:15 finished grading: 23:00:58 wait_time: 1 sec grading_time: 43 sec
csci2800_pl_bakert upload: 23:00:18 started grading: 23:01:00 finished grading: 23:01:19 wait_time: 42 sec grading_time: 19 sec
cscil200_hw3_hallb upload: 23:00:24 started grading: 23:01:00 finished grading: 23:01:23 wait_time: 36 sec grading_time: 23 sec
cscil100_hwl_cookr upload: 23:00:28 started grading: 23:01:20 finished grading: 23:01:29 wait_time: 52 sec grading time: 9 sec

The corresponding statistics std: : cout output shows that the simulation empties the queue earlier, and the
waiting time is reduced and the idle percentage of the server is decreased:

number of jobs: 6

scheduling algorithm: first_available
data structure: std::list
time to empty queue: 95 sec
average waiting time: 22.67 sec
maximum waiting time: 52 sec
idle percentage: 64.21 %
simulation running time: 0.00 sec

In the previous example, you may have noticed that the fifth and sixth students were delayed even though
their resource needs were minimal and processors were idle. With the third scheduling algorithm you will
implement, ——algorithm keep_busy, the system will try to keep more/all of the processors busy. If there
are idle processors, the algorithm will look into the queue of waiting jobs — beyond the first item — for a job
that can immediately use the available resources. Here is the output of the same example using the “keep
busy’ algorithm:

timestamp| processor 0 | processor 1 | processor 2 | processor 3 | processor 4 | queue
23:00:00 | | | | | | 0
23:00:05 | | | | | | 0
23:00:10 | cscil100_hw3_jonesp | | | | | 0
23:00:15 | cscil100_hw3_jonesp | cscil100_hwi_leek | csci2600_hw3_smitha | | | 0
23:00:20 | | csci1100_hwl_leek | ¢sci2600_hw3_smitha | | | 1
23:00:25 | ¢sci1200_hw3_hallb | csci1100_hwil_leek | csci2600_hw3_smitha | | | 1
23:00:30 | ¢sci1200_hw3_hallb | ¢sci1100_hwl_cookr | ¢sci2600_hw3_smitha | | | 1
23:00:35 | ¢sci1200_hw3_hallb | ¢sci1100_hwl_cookr | ¢sci2600_hw3_smitha | | | 1
23:00:40 | c¢sci1200_hw3_hallb | | ¢sci2600_hw3_smitha | | | 1
23:00:45 | ¢scil200_hw3_hallb | | csci2600_hw3_smitha | | | 1
23:00:50 | | | csci2600_hw3_smitha | | | 1
23:00:55 | | | csci2600_hw3_smitha | | | 1
23:01:00 | csci2800_p1_bakert | csci2800_p1_bakert | csci2800_p1_bakert | csci2800_p1_bakert | | 0
23:01:05 | c¢sci2800_pl_bakert | csci2800_p1_bakert | csci2800_p1_bakert | csci2800_p1_bakert | | 0
23:01:10 | c¢sci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | | 0
23:01:15 | c¢sci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | csci2800_pl_bakert | | 0
23:01:20 | | | | | | 0

We can see that the 5th and 6th students hallb and cookr are now scheduled ahead of the 4th student
bakert, who needs more resources for autograding. Here is the log file for the keep busy algorithm:

cscill00_hw3_jonesp upload: 23:00:09 started grading: 23:00:10 finished grading: 23:00:19 wait_time: 1 sec grading_time: 9 sec
cscill00_hwi_leek upload: 23:00:11 started grading: 23:00:15 finished grading: 23:00:25 wait_time: 4 sec grading_time: 10 sec
cscil100_hwil_cookr upload: 23:00:28 started grading: 23:00:30 finished grading: 23:00:39 wait_time: 2 sec grading_time: 9 sec
cscil200_hw3_hallb upload: 23:00:24 started grading: 23:00:25 finished grading: 23:00:48 wait_time: 1 sec grading_time: 23 sec
csci2600_hw3_smitha upload: 23:00:14 started grading: 23:00:15 finished grading: 23:00:58 wait_time: 1 sec grading time: 43 sec
csci2800_pl_bakert upload: 23:00:18 started grading: 23:01:00 finished grading: 23:01:19 wait_time: 42 sec grading time: 19 sec

And the expected improvements are also shown in the statistics:

number of jobs: 6
scheduling algorithm: keep_busy
data structure: std::list
time to empty queue: 85 sec
average waiting time: 8.50 sec
maximum waiting time: 42 sec
idle percentage: 60.00 %
simulation running time: 0.00 sec

These sample input and output files and additional, larger input files are posted on the course website.

After you have implemented and debugged these scheduling algorithms, you will test and analyze the
performance of these three algorithms using the provided larger synthetic input datasets on larger simulated
Submitty systems with proportionally more processors. What works well? What can be improved? Consider
how you might use the maximum runtime for each upcoming job in the queue. NOTE: Our scheduling
algorithm should not use the actual runtime when deciding which job to run on which processor, since that
future knowledge is not known during real-world autograding!

You will design and implement your own scheduling algorithm (run with --algorithm custom). In your
README.txt file you will describe the goals of your scheduling algorithm, how you implemented it, and how
it performs compared to the 3 required algorithms. We will create a leaderboard for this assignment so you
can see how well your custom algorithm does compared to your classmates. A small amount of extra credit
will be awarded to students with interesting algorithms that perform well relative to their classmates.

Queue Implementation Requirements and Performance Analysis

In lecture we discussed the similarities and differences between STL’s two primary sequential data structures,
the STL vector and the STL 1list. We said that the STL list was preferable for applications that involve
frequent insertions (and/or removals) at the front or middle of the structure. Thus the primary/default data
structure you will use for the first-in, first-out (FIFO) queue used in the 4 scheduling algorithms (3 required
and 1 custom) will be the STL 1ist.

To confirm that list has better performance than vector for this application, we will use preprocessor
directives in the code to switch from a list to a vector. In your implementation, anywhere the code for
using the two structures is different you will surround the code with a preprocessor #if, #else, #endif block.
For example:

#ifdef VECTOR

std: :vector<Job> todo;
#else

std::1ist<Job> todo;
#endif

By default your code will use STL list, but if the ~-DVECTOR option is added to your g++/clang++ compilation
line the compiled executable will instead use the code in the VECTOR section of the preprocessor directives.

g+t+ -Wall -Wextra timestamp.cpp simulator.cpp main.cpp -0 simulate.out
g+t+ -Wall -Wextra timestamp.cpp simulator.cpp main.cpp -DVECTOR -o simulate_vector.out

Test each of the scheduling algorithms with both vector and list on autograding scheduling simulations
of increasing size. Record this data and summarize the results of this testing in your README. txt. Discuss
whether this matches your expectations given the Big O Notation of key functions for STL 1ist vs. vector.
The final line of the statistics output measures the wall clock running time — you’ll need to use larger input
files to see a difference in the running time!

Provided Code and Additional Instructions

We have provided the main.cpp file which parses the input file and the Timestamp and Job classes. You
should not need to modify anything in these files. Your task is to complete the scheduling algorithms in the
Simulator class and complete the code to collect and output statistics about the simulation. Be sure to
study all of the provided code before you get started. The code to format the output data should be helpful
to ensure that your assignment can be correctly autograded — Yes, isn’t it ironic?

In your README.txt file, provide a Big O Notation complexity analysis for the simulation using each of the
4 algorithms. Focus first on the running time using an STL list, then you can discuss how the answer is
different when you use a vector. Use jto represent the total number of student autograding submissions/jobs,
use p for the total number of processors on the Submitty system, use n for the average or maximum number
of processors needed by a single job, use r to be the average or maximum runtime of a single job, use ¢ as
the maximum number of jobs in the queue at any time, and use ¢ for the number of timesteps to empty
the queue and complete all autograding in the simulation. Discuss how the variables j, p, n, , ¢, and t are
related to each other.

In your README.txt file collect and organize the results of your testing with different input files and
command line arguments. Discuss how the simulation results compare to your Big O Notation analysis. And
as always, be sure to list your collaborators and all resources used in completing the assignment in your

README .txt.

