
CSCI-1200 Data Structures — Fall 2025
Homework 6 — Carcassonne Recursion

Your task for this homework is to solve tile placement puzzles inspired by the board game “Carcassonne”
using the technique of recursion. You can read more and see examples of the the full game here:

http://en.wikipedia.org/wiki/Carcassonne_(board_game)

http://norvig.com/carcassonne.html

Understanding the non-linear word search program and other recursion examples from Lecture & Lab will
be helpful in thinking about how you will solve this type of problem. We strongly urge you to study these
examples, and practice using a step-by-step debugger (gdb/lldb) and also std::cout statements to trace
their execution. Please carefully read the entire assignment and study the provided code before beginning your
implementation.

You will be given a sequence of square tiles that must be played one at a time onto a two-dimensional grid
board. Each of the four tile edges is labeled as “road”, “city”, or “pasture”. The first tile may be played
anywhere, but each following tile must touch a previously played tile along an edge. All touching tile edges
must match. All tiles must be played in the order given – the sequence may not be rearranged. Finally,
for our version of this game, a board layout is a “Solution” only if every “road” and “city” tile edge has a
matching neighbor tile touching it. The only tile edges without neighbors should be labeled “pasture”.

A tile with 0 or 1 road edges and no city edges is called an abbey tile and we draw a little building on the
tile. Note that not all labelings of road/edge/pasture are legal tiles. (And, we use a simpler set than the
original board game.) The provided code will check for illegal tiles in the input. You may assume that all
input files are properly formatted and use only legal tiles.

Below is a sample input file (puzzle5.txt). The keyword tile

is followed by four strings that specify the edges of the tile in the
north, east, south, and west directions. On the right is a diagram
showing these tiles arranged to form the only solution for this
particular tile puzzle. Pastures are green, cities are brown, and
roads are thick black lines. Note the numbers on each tile, which
correspond to the line number from the input file. Every tile touches
the edge of at least one tile with a smaller number that was played
earlier in the game.

tile road road road pasture

tile city city road road

tile pasture road road pasture

tile road pasture city road

tile road road pasture pasture

tile road pasture pasture road

tile pasture pasture pasture city

tile pasture pasture road pasture

N

E

S

W

2

3 4

8

7

65

1

Your program will expect one or more command line
arguments, e.g.:

./carcassonne.exe puzzle5.txt --board_dimensions 4 3

./carcassonne.exe puzzle5.txt --board_dimensions 4 3 --all_solutions

./carcassonne.exe puzzle5.txt --board_dimensions 4 3 --allow_rotations

./carcassonne.exe puzzle5.txt --allow_rotations --all_solutions

The first argument specifies the name of the input puzzle file. To begin, we recommend that you also use
the optional argument --board_dimensions <rows> <columns>, which specifies maximum dimensions for
the solution grid.

http://en.wikipedia.org/wiki/Carcassonne_(board_game)
http://norvig.com/carcassonne.html


If the optional argument --all_solutions is not specified, your program should output any one solution.
If --all_solutions is specified, your program should output all solutions, in any order, followed by the
message “Found XX Solutions(s).” (where XX is the integer number of solutions). Note that if the input
contains duplicate tiles, we do not consider swapping these tiles in the output grid to be a different solution.
You should only output solutions that create a different map. If there are no solutions, your program should
output “No Solutions.”

Finally, if the --allow_rotations argument is specified, each tile may be rotated clockwise 90, 180, or 270
degrees before it is inserted into the grid. In many cases this produces more solutions to the puzzle. However,
we do not count (and you should not output) rotations of the whole board as a different unique solution.

All program output should be sent to std::cout. Each solution must be output with the keyword “Solution:”
followed by the row and column coordinates and rotation (0◦, 90◦, 180◦, or 270◦) of each tile in the input (in
order). For example, here are the 4 different solutions for puzzle 4 when rotations are allowed:

Solution: (1,1,0)(1,2,0)(2,1,0)(2,2,0)(3,2,0)(0,2,0)(1,0,0)(2,0,0)

Solution: (1,1,0)(1,2,0)(2,1,0)(2,2,90)(2,3,270)(0,2,0)(1,0,0)(2,0,0)

Solution: (1,1,0)(2,1,90)(1,0,90)(2,0,180)(3,0,0)(0,0,0)(1,2,90)(2,2,270)

Solution: (1,1,180)(0,1,270)(1,2,270)(0,2,270)(0,3,270)(2,2,180)(0,0,0)(1,0,0)

Found 4 Solution(s).

For human readability, we also print an ASCII art representation of each finished board. (The submission
server will only be grading the lines that begin with “Solution:” and the final summary line with the
total number of solutions.) Please study the sample output files provided on the webpage, and match the
formatting exactly (except for choice of single output solution, choice among duplicate solutions, and order
of all solutions).

Provided Code, Additional Requirements, and Homework Submission

We provide the Tile, Board, and Location classes, and code to parse the command line arguments, load
the puzzle input file, and create the human-friendly ASCII art board output. You may use or modify any or
all of the provided code in your solution.

You must use recursion in a non-trivial way in your solution to this homework. As always, we recommend you
work on this program in logical steps. Partial credit will be awarded for each component of the assignment.
Start by placing tiles onto the board that follow the game rules of matching edges and sequential playing
(touching an edge of a previously placed tile). Then, work on creating boards with fewer or no unmatched
road and city edges. Stopping here will earn the majority of points for this homework. The next step is to
find all of the different solutions to the input puzzle. Move on to finding solutions that require rotating one
or more pieces in the input collection. And finally, doing all this when no board dimensions are specified is
worth full credit. IMPORTANT NOTE: This problem is computationally expensive, even for medium-sized
puzzles with less than a dozen tiles! Be sure to create your own simple test cases as you debug your program.

Once you have finished your implementation, analyze the performance of your algorithm using Big O
Notation. What important variables control the complexity of a particular problem? The dimensions of
the board (h and w)? The number of tiles (t)? The number of road (r) and city (c) edges? The number of
duplicate tiles? Whether rotations are allowed? Etc. In your README.txt file write a concise paragraph (<
200 words) justifying your answer. Also include a simple table summarizing the running time and number of
solutions found by your program on each of the provided examples. Indicate the command line arguments
for each test (which puzzle, board dimensions, all solutions, and rotations allowed).

All students are required to submit their program to the Homework 6 contest (see below). Extra credit will
be awarded for programs that have a strong performance in the contest.

2



Carcassonne Contest Rules

• The main homework gradeable, named “Homework 6: Carcasonne Recursion”, is due on Thursday,
October 30th. As with other homeworks, you may use up to two late days for the homework submission.

• You may optionally submit one or two interesting new test cases for possible inclusion in the contest.
Name these tests smithj_1.txt and smithj_2.txt (where smithj is your RCS username). These
new test cases must be uploaded to the “Homework 6: Optional Puzzle Submission” gradeable by
Tuesday, November 4th in order to be considered for use in the contest. Extra credit will be awarded
for interesting test cases that are used in the contest. Caution: Don’t make the test cases so difficult
that your own program cannot solve them in a reasonable amount of time!

• All students must submit to the “Homework 6: Contest” gradeable before Sunday,
November 9th at 11:59pm. You may not use late days for the contest. Fill out and include
the README_contest.txt file with your contest submission.

• You may submit the same code for both the regular homework submission and the contest. Or you
may make a small or significant changes for the contest.

• Contest submissions do not need to use recursion.

• Contest submissions must follow the output specifications and match the formatting of the examples
posted on the course webpage.

• We will compile all contest entries with standard optimizations, e.g., g++ -O3 *.cpp.

• Programs must be single-threaded and single-process.

• Submitty will run your program by redirecting std::cout to a file and measure performance with the
UNIX time command. You can do the same thing and measure the performance of your program on
your own machine, for example:

time carcassonne.exe puzzle1.txt --all_solutions > output.txt

• You may want to use a C++ code profiler to measure the efficiency of your program and identify the
portions of your code that consume most of the running time. A profiler can confirm your suspicions
about what is slow, uncover unexpected problems, and focus your optimization efforts on the most
inefficient portions of the code. The gprof C/C++ code profiler works on GNU/Linux systems
including Ubuntu, WSL, and the Docker Ubuntu container for MacOS.

• We will be testing with and without the optional command line arguments --board_dimensions,
--all_solutions, and --allow_rotations and will highlight the most correct and the fastest programs.

• In your README_contest.txt file, describe the optimizations you implemented for the contest, describe
your new test cases, and summarize the performance of your program on all test cases.

• Extra credit will be awarded based on overall performance in the contest.

3

https://sourceware.org/binutils/docs/gprof/

