CSCI-1200 Data Structures — Fall 2025
Lab 1 — Introduction to C++ Development

Welcome to CSCI 1200 Data Structures lab! Please listen carefully when your graduate lab TA and
undergraduate programming mentors introduce themselves at the start of class. They are here to answer
any questions about the course materials and work with you one-on-one to master strong programming and
debugging skills. Also, introduce yourself to the other students in your lab section.

There will be three graded exercises or “checkpoints” associated with each lab. You are encouraged to talk
with your classmates about the lecture material, the lab exercises, and about C++ programming skills. This
will help reduce the burden on the TAs and will reduce your waiting time in lab. Note: Each student
must produce his/her own exercise solutions. To earn credit for each checkpoint you will need to
answer short questions about the material. If you have done the checkpoint and understood it, you should
have no trouble earning this credit. If you have relied on help from other students too much, you may find
the questions hard to answer.

If you have a question about the exercise or if you are ready to be checked off, add your name to the
appropriate Submitty Office Hours Queue for the next available TA /mentor:

https://submitty.cs.rpi.edu/courses/£25/cscil200/office_hours_queue

Do not wait until the end of lab to be checked off for multiple checkpoints. If other students
are waiting in the queue the TA /mentor will only check you off for one checkpoint at a time and ask you to
add your name to the end of the queue for the next checkpoint. Class ends 10 minutes before the hour and
no checkpoints may be earned after this time. Barring extenuating circumstances, no checkpoints may be
earned outside of the lab period.

You should plan to spend the full 1 hour and 50 minutes in the lab room every week. If you do finish your
lab work early, you can ask the TA and mentors questions about this week’s Data Structures Homework or
about the upcoming exam. Some weeks you may finish the lab exercises early and be able to leave early —
but do not expect this to happen every week.

IMPORTANT NOTE: No phones, no email, no texting, no social media, no web surfing, no game-
playing, no distraction! With the exception of downloading lab files provided by the instructor at
the start of lab, and occasional use of online C++ reference material (e.g., to look up the the
details of a particular built-in function or class), you are not allowed to use the internet during
lab. You should not use generative AI (ChatGPT, Copilot, Gemini, Claude, etc.) to
complete the Data Structures lab exercises or homework. Anyone caught using their
cell phones, the internet, Al tools for writing or analyzing text or code, or programs not directly
relevant to this course will be given an immediate 0 for that lab and asked to leave.

Today we focus on using the terminal command line and g++ to compile, run, and inspect
the results of your program. After today’s lab you are welcome to explore other options for your C++
development environment. However, for the homework assignments, your code must compile and run correctly
under gee/g++ 11.4 and/or llvm/clang++ 14.0 on Ubuntu 22.04. This streamlined grading process allows
the TAs to spend more time giving you constructive feedback on programming style, individual tutoring,
and debugging help.

Checkpoint 1 estimate: 30 minutes (+ installation delays??)

e The course website includes instructions to install and setup the necessary software for Windows,
MacOSX, and GNU/Linux. Windows users will need the Windows Subsystem for Linux (WSL) to
follow the instructions below. Ask your TAs and mentors for help if you get stuck.
http://www.cs.rpi.edu/academics/courses/fall25/cscil200/development_environment.php


https://submitty.cs.rpi.edu/courses/f25/csci1200/office_hours_queue
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/development_environment.php

e Create a directory (a.k.a. “folder”) on your laptop to hold Data Structures files. Create a sub-
directory to hold the labs. And finally, create a sub-directory named labl. Please make sure to save
your work frequently and periodically back-up all of your data.

e Using a web browser, copy the following files to your 1lab1l directory:
http://www.cs.rpi.edu/academics/courses/fall25/cscil1200/1labs/01_intro_to_c++/quadratic.cpp
http://www.cs.rpi.edu/academics/courses/fall25/cscil200/1labs/01_intro_to_c++/README. txt

e Open a shell/terminal/command prompt window. Please ask for help if you have problems
installing WSL or finding your bash shell or terminal.

How to use the Terminal Command Line: Typical Structure

command arguments(s) option argument for option two additional options
i \ \ 3 \ \
g++ main.cpp -0 test.exe -Wall -Wextra

Each command will typically be structured somewhat like the one above. First comes the name of the
command, like “g++” or “1s” or “cd”. Then come any arguments that the command takes (some commands
don’t take any — some take a lot). The command may also have options, like “~1” for the “1s” command,
which displays the long format listing with dates and sizes, etc. Options can have arguments as well, like
the “-0” command for “g++”, which expects a name for the executable that will be created. Display a
help message for the command by typing the command name and then “--help”. You can learn about a
command’s options by typing “man” and then the command name to view its manual page. Google is also
a helpful resource for learning about command options.

Listing Files 1s or 1s Documents/RPI/DS/Homeworks

List the files in a directory with the lIs command. You can just type “ls” for the current directory, or
“1s” and then a path to a directory to view that directory’s contents. If you need to view more detailed
information about each file (like the date modified, file size, permissions, etc.), use “ls -1”.

Changing directories cd labl or cd ../../homeworks/hwil

Change directories with the “cd” command. You can navigate to an immediate subdirectory by specifying
just that subdirectory name, or you can jump several levels away separating each directory name with a
“/”. Use “cd ..” to go up a level to the parent directory. You may specify an absolute path by starting
with the top level root directory “/”; otherwise it is a relative path starting at the current directory. Note:
“./” refers to the current directory and “~/” is your home directory. On Windows/WSL, to get to your
home directory the C drive you will type something like “cd /mnt/C/Users/”.

e Within the terminal, navigate to your Data Structures Lab 1 directory and inspect the contents
of your file system as you go using the “1s”, “cd”, and “pwd” commands.

In doing so, remember that directory names are separated by a forward slash “/” and when you have
a space in the name of the directory, you precede the blank with a backslash “\”. Thus, you may type
something like this:

cd /Users/username/My\ Documents/Data\ Structures/labs/labl

e Confirm that the files quadratic.cpp and README. txt are in the current directory (use 1s).

Where am 1?7 pwd

Use this command to print the (current) working directory.



http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/01_intro_to_c++/quadratic.cpp
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/01_intro_to_c++/README.txt

Auto-complete - just hit tab

You can use the tab key to auto-complete a command, directory, or filename after typing the first few
letters (if the completion is unique).

Using previous commands - up/down arrows, history, and !

You can use the up and down arrows of the keyboard to navigate through old commands so you don’t
have to retype them. Type “history” to view a list of recently run commands. For example, if you had
just run a “g++” command, made some file edits and wanted to re-compile, you could press the up arrow
and the “g++” command would show up as if you had just typed it. Use the “!” command to search the
recent command history and re-run commands. “!'!” will re-run the previous command (same as typing
up arrow, then enter). If you want to go back 2 commands, use “!-2”. You can also search using “!” and
then a string. If you ran “!g++”, it would find the most recent command starting with “g++”, like “g++
main.cpp -Wall -Wextra -o test.exe”, and re-run it. These tricks are very useful so you don’t have to
painstakingly retype commands!

e First, let’s confirm that gcc is installed on your machine and check the version by typing:

gt+ -v

If you are not using Ubuntu 22.04 and gee/g++ 11.4 or clang/clang++ 14.0, you may notice slight
differences between your compiler and the version on the homework submission server. But don’t
worry if you have a different version! We will primarily be using parts of C++ that have been stable
and unchanged for many years. You may also try to compile using clang++ instead of g++. The
LLVM/clang++ compiler has earned much praise for having clear and concise compiler error messages
that are especially helpful for new C++ programmers. Note that on MacOSX g++ is probably actually
aliased to run clang++ instead. This is not a problem!

Compilation g++ main.cpp my_class.cpp -Wall -Wextra or g++ *.cpp -0 test.exe

After the compiler name (“g++” or “clang++”), list all of the . cpp files that you want to be compiled (later
when we use .h files, you will NOT list them for the compiler, they will be #include-d instead). You can
manually list out the files or, if you want to specify all of the .cpp files in the current directory, just use
“x.cpp”’. The “x” searches for all files that match that pattern.

The process of compiling a program translates the high-level C++ code into machine-level, “object” code,
which is then linked with pre-compiled libraries to produce an executable. You can specify the name of the
executable with the “~o0” option (or it will name your program “a.out” on GNU Linux/OSX or “a.exe”
on Windows by default).

If the compiler gets confused by a problem with your code and cannot create an executable, it will print
out error messages. You must correct all errors before you can run the program.

In addition to errors, the compiler may find lines of your code that look suspicious. If possible, the compiler
will report these issues as warnings, but still produce an executable you may run. You should look closely
at all warnings (they may be problematic bugs in your logic!) and it is good practice to correct these issues
as well. We recommend using the “-Wall -Wextra” options to compile with all warnings enabled.

e Now you are ready to attempt to compile/build the program for this lab by typing:

g++ quadratic.cpp -o quadratic.exe -Wall -Wextra

We have intentionally left a number of errors in this program so that it will not compile correctly to
produce an executable program. Don’t fiz them yet!



e “Submit” the buggy version of the lab code to Submitty:
https://submitty.cs.rpi.edu/courses/£25/cscil200/
Upload the quadratic.cpp and README. txt files to Lab 1 Practice gradeable. After submitting the
buggy code you should receive confirmation of your submission and be notified of the compile-time
errors in the program. Note that all homeworks will require submission of both your working code and
completed README.txt file to receive full credit.

e The compiler errors we have introduced are pretty simple to fix. Please do so, and then re-compile the
program on your own machine. Once you have removed all of the errors, you are ready to execute the
program by typing:

./quadratic.exe

After testing the program on your own machine with a variety of inputs, and convincing yourself
everything looks good, then you can “Re-submit” the fixed version of the lab code to the
homework server. Assuming your fixes are cross-platform compatible, the re-submission should
successfully compile and run without error. Note that Submitty allows you to review the autograding
results of all prior submissions.

To complete Checkpoint 1: Show a TA or mentor the compiler errors that you obtained in the g+4/clang+-+
development environment on your machine and the response from Submitty indicating the same compiler
errors. Also show the edits you made to the code to fix these problems both on your machine and on
Submitty.

Showing a text file - cat, less, head, and/or tail

These commands can be used to print the contents of a code or plaintext file on the screen. This is useful
for checking any program output written to a text file. cat displays the whole file (it may scroll off the
screen), less shows one page of the file at a time (use space bar to see the next page), head shows the
first lines of the file, and tail shows the last lines of the file.

Checkpoint 2 estimate: 30 minutes

Now let’s write a brand new C++ program to learn about command line arguments. Your program will
be given one or more integers on the command line and it will print the product (multiplication) of those
numbers to the console (std: :cout).

e First open up a brand new file named silly.cpp. Include <iostream> at the top of the file.

e Read the reference sections of the course webpage explaining command line arguments in C++:
http://www.cs.rpi.edu/academics/courses/fall25/cscil200/programming_information.php
Hint: You’ll want to read the section of the course webpage on converting strings to integers.

e When you’re done, you compile your program:
g++ -Wall -Wextra -g -o silly.out silly.cpp

e And then test it out. For example if we run:
./silly.out 2 3 4

Your program should print:

product of integers: 24

e And if we run:
./silly.out 3 -1 2 20 5


https://submitty.cs.rpi.edu/courses/f25/csci1200/
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/programming_information.php

It should print:
product of integers: -600

To complete Checkpoint 2: Show a TA or mentor your program. Be ready to demonstrate that your
program works with other input requested by the TA or mentor.

Checkpoint 3

Checkpoint 3 will be available at the start of Wednesday’s lab.




