CSCI-1200 Data Structures — Fall 2025
Lab 4 — Vec Implementation

Checkpoint 1 estimate: 30-45 minutes

Checkpoint 1 (Diagramming Dynamic Memory) is a pencil-and-paper
8-4 person group activity and will be available at the start of Wednesday’s lab.

Checkpoints 2 and 3 explore our implementation from lecture of the STL vector class. Please download:

http://www.cs.rpi.edu/academics/courses/fall25/csci1200/1abs/04_vec_implementation/vec.h
http://www.cs.rpi.edu/academics/courses/fall25/cscil1200/1labs/04_vec_implementation/test_vec.cpp

Checkpoint 2 estimate: 10-25 minutes

Write a templated non-member function remove_matching_elements that takes in two arguments, a Vec<T>
and an element of type T, and returns the number of elements that matched the argument and were
successfully removed from the vector. The order of the other elements should stay the same. For example, if v,
a Vec<int> object contains 6 elements: 11 22 33 11 55 22 and you call remove_matching_elements(v,11),
that call should return 2, and v should now contain: 22 33 55 22.

Add several test cases to test_vec.cpp to show that the function works as expected. Think about the
efficiency of your solution relative to the size of the vector, and the number of occurrences of the input
element in the vector. Make sure that the function is not unnecessarily wasteful of CPU or memory resources.

NOTE: Your implementation should use the Vec subscript ([1) member operator and the resize () member
function. It should not use iterators or the erase function that is part of the full STL vector implementation.
We will cover iterators and the erase member function in lecture Friday. Your implementation should NOT
create a new Vec object or use an additional helper array or STL vector as a helper structure.

To complete this checkpoint, show a TA your debugged solution for remove_matching_elements and
be prepared to discuss the efficiency of the function.

Checkpoint 3 estimate: 20-40 minutes

Add a public print member function to Vec to aid in debugging. (Note, neither remove_matching_elements
nor print are not part of the STL standard for vector). You should print the current information stored in
the variablesm_alloc, m_size, and m_data. Use the print function to confirm your remove_matching_elements
function is debugged. Also, write a test case that calls push_back many, many times (hint, use a for loop!)
and observe how infrequently re-allocation of the m_data array is necessary.

To verify your code does not contain memory errors or memory leaks, use Valgrind and/or Dr. Memory on
your local machine — see instructions on the course webpage: Memory Debugging.

Also, submit your code to the homework server (in the practice space for lab 4), which is configured to run
the memory debuggers for this exercise. To verify that you understand the output from Valgrind and/or Dr.
Memory, temporarily add a simple bug into your implementation to cause a memory error or memory leak.

IMPORTANT NOTE: Please ask for help if you have trouble installing or running a memory debugger on
your laptop. Future homeworks must be memory error free and memory leak free for full credit!

To complete this checkpoint, show a TA your tested & debugged program. Be prepared to demo and
discuss the Valgrind and/or Dr. Memory output: with and without memory errors and memory leaks AND
on your local machine and on the homework server.


http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/04_vec_implementation/vec.h
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/04_vec_implementation/test_vec.cpp
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/memory_debugging.php

