
CSCI-1200 Data Structures — Fall 2025
Lab 6 — List Implementation

Checkpoint 1 estimate: 15-20 minutes

Let’s practice working with our implementation of the dslist class that mimics the STL list class.
Download these files:

http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/06_list_implementation/dslist.h

http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/06_list_implementation/lab6_testing.cpp

The implementation of the dslist class is incomplete and we have intentionally introduced a couple bugs.
First, let’s focus on the incomplete destroy_list private member function implementation. This function
is used by the destructor and the clear member function. The provided test cases for Checkpoint 1 in
lab6_testing.cpp work “fine”, so what’s the problem?

Before we fix the problem and implement destroy_list, let’s use Dr. Memory and/or Valgrind to look at
the details more carefully. Study the memory debugger output carefully. The output should match your
understanding of the problems caused by the missing destroy_list implementation. Ask a TA or mentor
if you have any questions.

Now write and debug the destroy_list function and then re-run the memory debugger to show that the
memory problems have been fixed.

To complete this checkpoint, show a TA the implementation and memory debugger output before and
after writing destroy_list.

Checkpoint 2 estimate: 20-40 minutes

To get started with this next checkpoint, finish the the implementation of the push_front, pop_front, and
pop_back functions. Uncomment the provided tests and write a few additional test cases of these functions
to be sure they are working correctly.

For the next part of this checkpoint, we have intentionally added two small bugs impacting the copy
constructor and assignment operator for ds_list. Can you spot these bugs? Even if you can, leave the
bugs in the code for the moment. Write test cases of the copy constructor and assignment operator for
ds_list. Have you revealed the bugs? Ask for help from a TA or mentor if you are stuck.

Now, you can fix the bugs and re-run your test cases and confirm that the copy constructor and assignment
operator will work as expected.

To complete this checkpoint, show a TA the new code and test cases and show them the result of running
the test cases before and after fixing the intentionally placed bugs in the copy constructor and assignment
operator.

Checkpoint 3 estimate: 30-50 minutes

Checkpoint 3 will be available at the start of Wednesday’s lab.
This checkpoint will be a “pair programming” exercise.

https://en.wikipedia.org/wiki/Pair_programming

http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/06_list_implementation/dslist.h
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/06_list_implementation/lab6_testing.cpp
https://en.wikipedia.org/wiki/Pair_programming

