CSCI-1200 Data Structures — Fall 2025
Lab 8 — Operator Overloading & Superhero Friends

Checkpoint 1 estimate: 30-50 minutes

Checkpoint 1 will be available at the start of Wednesday’s lab.

Checkpoint 2 estimate: 15-25 minutes

This lab is a fun (& silly) departure from our focus on the practical use and implementation of complex
STL data structures and iterators. You will create two new classes that represent individual superheroes
(Superhero) and teams of superheroes (Team). We provide sample code in the main.cpp file demonstrating
how these classes should behave and interact. This lab will give you practice overloading operators.

http://www.cs.rpi.edu/academics/courses/fall25/cscil200/1abs/08_operators/main.cpp
http://www.cs.rpi.edu/academics/courses/fall25/cscil1200/1abs/08 _operators/team.h
http://www.cs.rpi.edu/academics/courses/fall25/cscil200/1abs/08_operators/team.cpp

First create the Superhero class that stores the hero’s name, their true identity, and their superhuman power,
all as strings. You should write read-only accessor functions to get the hero’s name and power. However,
it is important that each superhero’s true identity remain a secret, so it must not be accessible through the
public interface. The only way to discover a superhero’s true identity is to correctly guess their true identity
by using the operator== and operator!= functions. See the examples in the main.cpp file. Complete the
necessary implementation so that the code compiles and runs successfully (with no assertion failures).

To complete this checkpoint: Show one of the TAs your implementation.
Checkpoint 3 estimate: 15-25 minutes

In the sample code we use the unary operator- to negate (a.k.a. corrupt) a superhero. Superheroes are
initially good, but turn to evil if corrupted. Likewise, the operation can be applied in reverse to turn an evil
supervillain into a good superhero. Another fun example is operator> that can be used to settle debates
about which hero’s superpower is greater. Our test cases do not fully specify the differences in greatness for
all powers. Your task is to define and implement a ranking system for the remaining powers. However, it
is important to note that this property is not necessarily transitive; that is, if a > b and b > c, it does not
necessarily hold that a > c.

To complete this checkpoint: Show a TA these additions and the test output.
Checkpoint 4 - EXTRA CREDIT estimate: 15-25 minutes

The final component of the lab is to finish the implementation for teams of superheroes. Various versions of
operator+, operator+=, and operator-= are used in the example code to build, add to, remove from, and
merge teams. Study carefully the provided prototypes and the parameter and return types of each of these
operators. Your job is to implement these operators. We provide the implementation of a Team member
function to get the name of the team. This name is automatically formed by taking the first consonant of the
first team member’s true identity, the first vowel of the first team member’s true identity, the first consonant
of the second team member’s true identity, the first vowel of the second team member’s true identity, etc.
You will need to add a friend relationship to compile this code.

Finally, be creative and select an operator that has not yet been overloaded and prepare a story behind how
it is used on superheroes or teams of superheroes. You do not need to implement this operator.

To complete this checkpoint and the entire lab: Show a TA your completed program and discuss your
proposed new operator. NOTE: You can only receive this extra credit if you have completed Checkpoint 1.


http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/08_operators/main.cpp
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/08_operators/team.h
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/08_operators/team.cpp

