CSCI-1200 Data Structures — Fall 2025
Lab 10 — Binary Search Trees
& ds_set Implementation, part I

Checkpoint 1

Checkpoint 1 will be available at the start of Wednesday’s lab.
It will be a team-of-two paper & pencil worksheet to be completed
with one other person from your lab section.

Checkpoint 2 estimate: 15-25 minutes

Now let’s explore the implementation of the ds_set class, along with the use of recursive functions to
manipulate binary search trees. Download and examine the files:

http://www.cs.rpi.edu/academics/courses/fall25/cscil1200/1abs/10_trees_I/ds_set.h
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/1labs/10_trees_I/test_ds_set.cpp

The implementation of find provided in ds_set.h is recursive. Re-implement and test a non-recursive
replacement for this function.

The provided test_ds_set.cpp has basic tests of insert, find, and print_sideways_tree. Write additional
test cases including: a type other than string; using insert to create a perfectly balanced tree, using insert to
create an extremely unbalanced tree; using find on a tree with no elements, with 1 element, the element is at
the root, the element is in the middle, the element is at the leaf, the tree is balanced, the tree is unbalanced;
and anything else you can think of.

To complete this checkpoint: Show one of the TAs your new code and variety of tests. Be prepared to
discuss the Big O Notation for running time for the two different versions of £ind for various inputs — what
is the best case, worst case, and average case?

Checkpoint 3 estimate: 15-25 minutes

The implementation of the copy constructor and the assignment operator is not yet complete because each
depends on a private member function called copy_tree, the body of which has not yet been written. Write
copy-tree and then test to see if it works by “uncommenting” the appropriate code from the main function.
You'll also have to type up the implementation of destroy_tree from yesterday’s lecture.

Run the code through the Dr Memory or Valgrind memory debuggers and make sure you have no memory
errors or memory leaks. Write a few additional test cases to make sure the copy function works with an
empty tree, a perfectly balanced tree, an extremely unbalanced tree, and anything else you can think of.

To complete this checkpoint: Show one of the TAs your new code. What is the Big O Notation of
copy_tree for a tree with n nodes and height h? Does it matter if the tree is balanced or unbalanced?

OPTIONAL: Bring your finished or nearly finished Homework 7
Data Structure Diagram to lab discuss the design with a TA /mentor.



http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/10_trees_I/ds_set.h
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/10_trees_I/test_ds_set.cpp

