
CSCI-1200 Data Structures — Fall 2025
Lab 10 — Binary Search Trees
& ds set Implementation, part I

Checkpoint 1

Checkpoint 1 will be available at the start of Wednesday’s lab.
It will be a team-of-two paper & pencil worksheet to be completed

with one other person from your lab section.

Checkpoint 2 estimate: 15-25 minutes

Now let’s explore the implementation of the ds set class, along with the use of recursive functions to
manipulate binary search trees. Download and examine the files:

http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/10_trees_I/ds_set.h

http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/10_trees_I/test_ds_set.cpp

The implementation of find provided in ds_set.h is recursive. Re-implement and test a non-recursive
replacement for this function.

The provided test_ds_set.cpp has basic tests of insert, find, and print_sideways_tree. Write additional
test cases including: a type other than string; using insert to create a perfectly balanced tree, using insert to
create an extremely unbalanced tree; using find on a tree with no elements, with 1 element, the element is at
the root, the element is in the middle, the element is at the leaf, the tree is balanced, the tree is unbalanced;
and anything else you can think of.

To complete this checkpoint: Show one of the TAs your new code and variety of tests. Be prepared to
discuss the Big O Notation for running time for the two different versions of find for various inputs – what
is the best case, worst case, and average case?

Checkpoint 3 estimate: 15-25 minutes

The implementation of the copy constructor and the assignment operator is not yet complete because each
depends on a private member function called copy tree, the body of which has not yet been written. Write
copy tree and then test to see if it works by “uncommenting” the appropriate code from the main function.
You’ll also have to type up the implementation of destroy_tree from yesterday’s lecture.

Run the code through the Dr Memory or Valgrind memory debuggers and make sure you have no memory
errors or memory leaks. Write a few additional test cases to make sure the copy function works with an
empty tree, a perfectly balanced tree, an extremely unbalanced tree, and anything else you can think of.

To complete this checkpoint: Show one of the TAs your new code. What is the Big O Notation of
copy_tree for a tree with n nodes and height h? Does it matter if the tree is balanced or unbalanced?

OPTIONAL: Bring your finished or nearly finished Homework 7
Data Structure Diagram to lab discuss the design with a TA/mentor.

http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/10_trees_I/ds_set.h
http://www.cs.rpi.edu/academics/courses/fall25/csci1200/labs/10_trees_I/test_ds_set.cpp

