Today

CSCI-1200 Data Structures — Fall 2025
Lecture 2 — STL Strings & Vectors

e STL Strings are “smart” & easy-to-use (vs. C-style char arrays)

e STL Vectors are “smart” & easy-to-use (vs. C-style arrays)

e More about pass-by-reference vs. pass-by-value (a.k.a. pass-by-copy)

2.1 The C++ Standard Library, a.k.a. “STL”

e The

standard library contains types and functions that are important extensions to the core C++ language.

We will use the standard library to such a great extent that it will feel like part of the C++ core language.
std is a namespace that contains the standard library.

e We use I/0O streams from the standard library to print to the terminal std::cout (“console output”), read
from the keyboard std::cin (“console input”), print a newline std::endl (“end line”), and read and write
from files std: :ifstream (“input file stream”) & std::ofstream (“output file stream”).

e Today we are talking about std: :string and std: :vector. And we will cover the other major data structures
available in STL as the term progresses.

e ['ve heard that if I put “using namespace std;” at the top of the file, I can then omit writing “std::” in
front of “std::string”, “std::vector”, “std::cout”, etc. Is that ok to do in this course?

We strongly discourage you from doing this on the homeworks and any time you are writing a modest or
significant C++ program that may be integrated with other modules of code or re-used in future projects.
It is especially bad to use this syntax in a header file — we’ll learn about header files next week. You may
lose points if you use this “using namespace std;” in your homework code.

Why is it bad? “using namespace std;” grabs ALL of classes and functions from STL (STL is very big!)
and dumps them all in the global namespace. If any class or function in your source code (or the source
code of your teammates or the source code of other libraries you may be using) happens to use the same
name as an STL class or function the project won’t compile. If STL adds new classes or functions in a
future release and one of those new classes or functions collides with your existing code, your program that
used to work will now be broken! C++ namespaces organize code in large projects and avoid accidental
name conflict. “using namespace std;” undermines this very good software engineering design principle.

bR 14 7

The syntax “using std::string;” “using std::cout;” is a much narrower, less destructive, and thus
more acceptable shortcut. These options are probably ok to use on homework.

For smaller C++ coding activities, e.g., practice problems and labs, it’s fine to use “using namespace
std;”. And similarly on the hand-written paper-and-pencil exams, it’s ok to assume “using namespace
std;” has been typed at the top of every program. You can skip hand-writing “std::” on exams — we’ll
know what you mean :)

2.2 Value Parameters and Reference Parameters

e Why do some function parameters have the & symbol in front of them? These parameters are “passed by
reference”.

e If we remove the & symbol, these parameters would instead be

3

‘passed by value”, a.k.a. “passed by copy”.

If we pass by value/copy, any edits made to the variables inside the function won’t be seen by the calling
function. Also, pass by copy of objects with a larger member footprint is wasteful of memory and slow.

e In general, the “Rules of Thumb” for using value and reference parameters:

When a function needs to provide just one result, make that result the return value of the function and
pass other parameters by value.

When a function needs to provide more than one result, a common method to return multiple results is
to use multiple reference parameters.

2.3

2.4

2.5

C-style Arrays Crash Course in C++: Lesson #8 ‘

An array is a fixed-length, consecutive sequence of objects all of the same type. The following declares an array
with space for 15 double values. Note the spots in the array are currently uninitialized.

double a[15];

The values are accessed through subscripting operations. The following code assigns the value 3.14159 to
location i=5 of the array. Here i is the subscript or index.

int i = 5;
a[i] = 3.14159;

In C/C++, array indexing starts at 0.

Arrays are fixed size, and each array knows NOTHING about its own size. The programmer must keep track
of the size of each array (often storing it in an additional helper variable).

Character Arrays and String Literals ‘Crash Course in C++: Lesson #9‘
(a.k.a., “C-style strings”)

In the line below "Hello!" is a string literal. The type of this value is a character array, which can be written
as charx or char([].

cout << "Hello!" << endl;
A char array variable can be initialized as:

char hl[] = {IHI, Iel’ lll’ lll’ IOI’ l!l’ I\Ol};
char h2[] = "Hello!";
charx h3 = "Hello!";

In all 3 examples, the variable stores 7 characters, the last one being the special null character, ’\0’.

The C language provides many functions for manipulating these “C-style strings”. We won’t cover them much
in this course because “C++ style” STL string library is much more logical and easier to use.

We will use char arrays for file names and command-line arguments, which you will use in Homework 0 (and
all future homeworks).

Editing char arrays & L-Values vs. R-Values Crash Course in C++: Lesson #12‘

Consider the simple code below. The char array a becomes "Tim". No big deal, right?

char*x a = "Kim";
charx b = "Tom";
al0] = b[0];

Let’s look more closely at the line: al0] = b[0]; and think about what happens.

In particular, what is the difference between the use of a[0] on the left hand side of the assignment statement
and b[0] on the right hand side?
Syntactically, they look the same. But,

— The expression b[0] gets the char value, 'T', from location 0 in b. This is an r-value.

— The expression a[0] gets a reference to the memory location associated with location 0 in a. This is an
l-value.

— The assignment operator stores the value in the referenced memory location.

The difference between an r-value and an l-value will be especially significant when we get to writing our own
operators later in the semester

What’s wrong with this code?

char*x foo = "hello";
foo[2] = 'X';
cout << foo;
'X' = fool3];
cout << foo;

Your C++ compiler will complain with something like: “non-lvalue in assignment”
e Note: Strings in Python are immutable, and there is no difference between a string and a char in Python.
Thus, ’a’ and "a" are both strings in Python, not individual characters.

In C++ & Java, single quotes create a character type (exactly one character) and double quotes create a string
of 0, 1, 2, or more characters.

2.6 About STL String Objects ‘Crash Course in C++: Lesson #9‘

e A string is an object type defined in the standard library to contain a sequence of characters.

e The string type, like all types (including int, double, char, float), defines an interface, which includes
construction (initialization), operations, functions (methods), and even other types(!).

e When an object is created, a special function is run called a “constructor”, whose job it is to initialize the
object. There are several ways of constructing string objects:

— By default to create an empty string:
std::string my_string_var;

— With a specified number of instances of a single char:
std::string my_string var2(10, ' ');

— From another string:
std::string my_string var3(my_string_var2);

e The notation my_string var.size() is a call to a function size that is defined as a member function
of the string class. There is an equivalent member function called length.
e Input to string objects through streams (e.g. reading from the keyboard or a file) includes the following steps:

1. The computer inputs and discards white-space characters, one at a time, until a non-white-space character
is found.

2. A sequence of non-white-space characters is input and stored in the string. This overwrites anything that
was already in the string.

3. Reading stops either at the end of the input or upon reaching the next white-space character (without
reading it in).

The (overloaded) operator '+’ is defined on strings. It concatenates two strings to create a third string, without
changing either of the original two strings.

The assignment operation '=’ on strings overwrites the current contents of the string.

The individual characters of a string can be accessed using the subscript operator []1 (similar to arrays).
— Subscript 0 corresponds to the first character.

— For example, given std: :string a = "Susan"; Thena[0] == 'S'andall] == 'u'andal4] == 'n'.

Strings define a special type string: :size_type, which is the type returned by the string function size()
(and length()).

— The :: notation means that size_type is defined within the scope of the string type.
— string::size_type is generally equivalent to unsigned int.

— You may see have compiler warnings and potential compatibility problems if you compare an int variable
to a.size().

We regularly convert/cast between C-style & C++-style (STL) strings. For example:

std::string s1("Hello!");
charx h = "Hello!";

std::string s2(h);
std::string s3 = std::string(h);

You can obtain the C-style string from a standard string using the member function c_str, as in s1.c_str().

This seems like a lot to remember. Do I need to memorize this? Where can I find all the details on string objects?

2.7

2.8

2.9

Note about Strings in Java & the new Keyword

Standard C++4 library std::string objects behave like a combination of Java String and StringBuffer
objects. If you aren’t sure of how a std: : string member function (or operator) will behave, check its semantics
or try it on small examples (or both, which is preferable).

Java objects must be created using new, as in:
String name = new String("Chris");

This is not necessary in C++. The C++ (approximate) equivalent to this example is:
std::string name("Chris");

Note: There is a new operator in C++ and its behavior is somewhat similar to the new operation in Java. We
will study it in a couple weeks. Please don’t try to use new or pointers until Homework 3.

Standard Template Library (STL) Vectors: Motivation

Example Problem: Read an unknown number of grades and compute some basic statistics such as the mean
(average), standard deviation, median (middle value), and mode (most frequently occurring value).

Our solution to this problem will be much more elegant, robust, & less error-prone if we use the STL vector
class. Why would it be more difficult/wasteful /buggy to try to write this using C-style (dumb) arrays?

STL Vectors: “C++4-Style”, “Smart” Arrays ’Crash Course in C++: Lesson #10‘

Standard library “container class” to hold sequences.
A vector acts like a dynamically-sized, one-dimensional array.

Capabilities:
— Holds objects of any type
— Starts empty unless otherwise specified
— Any number of objects may be added to the end — there is no limit on size.

— It can be treated like an ordinary array using the subscripting operator.

A vector knows how many elements it stores! (unlike C arrays)

There is NO automatic checking of subscript bounds.

Here’s how we create an empty vector of integers:
std: :vector<int> scores;

Vectors are an example of a templated container class. The angle brackets < > are used to specify the type of
object (the “template type”) that will be stored in the vector.

push_back is a vector function to append a value to the end of the vector, increasing its size by one. This is
an O(1) operation (on average).
— There is NO corresponding push_front operation for vectors.

size is a function defined by the vector type (the vector class) that returns the number of items stored in the
vector.

After vectors are initialized and filled in, they may be treated just like arrays.
— In the line
sum += scores[i];
scores[i] is an “r-value”, accessing the value stored at location i of the vector.
— We could also write statements like
scores[4] = 100;

to change a score. Here scores[4] is an “l-value”, providing the means of storing 100 at location 4 of the
vector.

— It is the job of the programmer to ensure that any subscript value ¢ that is used is legal — at least 0 and
strictly less than scores.size().

2.10 Initializing a Vector — The Use of Constructors
Here are several different ways to initialize a vector:
e This “constructs” an empty vector of integers. Values must be placed in the vector using push_back.
std: :vector<int> a;

e This constructs a vector of 100 doubles, each entry storing the value 3.14. New entries can be created using
push_back, but these will create entries 100, 101, 102, etc.

int n = 100;
std: :vector<double> b(100, 3.14);

e This constructs a vector of 10,000 ints, but provides no initial values for these integers. Again, new entries can
be created for the vector using push_back. These will create entries 10000, 10001, etc.

std::vector<int> c(n*n);
e This constructs a vector that is an exact copy of vector b.
std: :vector<double> d(b);

e This is a compiler error because no constructor exists to create an int vector from a double vector. These are
different types.

std: :vector<int> e(b);

2.11 Example: Using Vectors to Compute Standard Deviation

Definition: If ag,aq,as,...,a,—1 is a sequence of n values, and p is the average of these values, then the standard
deviation is:)
—1 Es
>ico (@i — Dk
n—1

// Compute the average and standard deviation of an input set of grades.
#include <fstream>

#include <iomanip>

#include <iostream>

#include <vector> // to access the STL vector class

#include <cmath> // to use standard math library and sqrt

int main(int argc, char* argv[]) {
if (arge '= 2) {
std::cerr << "Usage: " << argv[0] << " grades-file\n";
return 1;
}
std::ifstream grades_str(argv[1]);
if (!grades_str.good()) {
std::cerr << "Can not open the grades file " << argv[1] << "\n";

return 1;
}
std::vector<int> scores; // Vector to hold the input scores; initially empty.
int x; // Input variable

// Read the scores, appending each to the end of the vector
while (grades_str >> x) { scores.push_back(x); }
// Quit with an error message if too few scores.

if (scores.size() == 0) {
std::cout << "No scores entered. Please try again!" << std::endl;
return 1; // program exits with error code = 1

}

// Compute and output the average value.

int sum = 0;

for (unsigned int i = 0; i < scores.size(); ++ i) {
sum += scores[i];

}

double average = double(sum) / scores.size();
std::cout << "The average of " << scores.size() << " grades is "
<< std::setprecision(3) << average << std::endl;
// Compute and output the standard deviation.
double sum_sq_diff = 0.0;
for (unsigned int i=0; i<scores.size(); ++i) {
double diff = scores[i] - average;
sum_sq_diff += diffxdiff;
}
double std_dev = sqrt(sum_sq_diff / (scores.size()-1));
std::cout << "The standard_deviation of " << scores.size()
<< " grades is " << std::setprecision(3) << std_dev << std::endl;
return 0; // everything ok

2.12 Standard Library Sort Function
e The standard library has a series of algorithms built to apply to container classes.

e The prototypes for these algorithms (actually the functions implementing these algorithms) are in header file
algorithm.

One of the most important of the algorithms is sort.

It is accessed by providing the beginning and end of the container’s interval to sort.
e As an example, the following code reads, sorts and outputs a vector of doubles:

double x;

std: :vector<double> a;

while (std::cin >> x)
a.push_back(x) ;

std::sort(a.begin(), a.end());

for (unsigned int i=0; i < a.size(); ++i)
std::cout << al[i] << '\n';

e a.begin() is an iterator referencing the first location in the vector, while a.end() is an iterator referencing
one past the last location in the vector.

— We will learn much more about iterators in the next few weeks.

— Every container has iterators: strings have begin() and end() iterators defined on them.

e The ordering of values by std::sort is least to greatest (technically, non-decreasing). We will see ways to
change this.

2.13 Example: Computing the Median

The median value of a sequence is less than half of the values in the sequence, and greater than half of the values
in the sequence. If ag,a1,as,...,a,_1 is a sequence of n values AND if the sequence is sorted such that ag < a; <
as < -+ < ap—1 then the median is

a(n_l)/g if n is odd

a _1+a . .
Sn/2-1 T An/2 5f mis even

#include <algorithm>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <vector>

void read_scores(std::vector<int> & scores, std::ifstream & grade_str) {
int x;

while (grade_str >> x) {
scores.push_back(x) ;
}
}

void compute_avg_and_std_dev(const std::vector<int>% s, double & avg, double & std_dev) {
// first compute the average value
int sum=0;
for (unsigned int i = 0; i < s.size(); ++ i) {
sum += s[i];
}
avg = double(sum) / s.size();
// then we can compute the standard deviation
double sum_sq = 0.0;
for (unsigned int i=0; i < s.size(); ++i) {
sum_sq += (s[i]l-avg) * (s[i]l-avg);
}
std_dev = sqrt(sum_sq / (s.size()-1));
}

double compute_median(const std::vector<int> & scores) {
// Create a copy of the vector, which we can sort. By default this is increasing order.
std::vector<int> scores_to_sort(scores);
std: :sort(scores_to_sort.begin(), scores_to_sort.end());
// Now, compute and output the median.
unsigned int n = scores_to_sort.size();

if (%2 == 0) // even number of scores
return double(scores_to_sort[n/2] + scores_to_sort[n/2-1]) / 2.0;
else

return double(scores_to_sort[n/2]); // same as (n-1)/2 because n is odd

}

int main(int argc, char* argv[]) {

if (arge !'= 2) {
std::cerr << "Usage: " << argv[0] << " grades-file\n";
return 1;

}

std::ifstream grades_str(argv[1]);

if (!grades_str) {
std::cerr << "Can not open the grades file " << argv[1] << "\n";
return 1;

}

std::vector<int> scores; // Vector to hold the input scores; initially empty.
read_scores(scores, grades_str); // Read the scores, as before

// Quit with an error message if too few scores.

if (scores.size() == 0) {
std::cout << "No scores entered. Please try again!" << std::endl;
return 1;

}

// Compute the average, standard deviation and median
double average, std_dev;
compute_avg_and_std_dev(scores, average, std_dev);
double median = compute_median(scores);

// Output

std::cout << "Among " << scores.size() << " grades: \n"
<< " average = " << std::setprecision(3) << average << '\n'
<< " std_dev = " << std_dev << '\n'
<< " median = " << median << std::endl;

return O;

2.14 Passing Vectors (and Strings) As Parameters Crash Course in C++: Lesson #12]

The following outlines rules for passing vectors as parameters. The same rules apply to passing strings.
e If you are passing a vector as a parameter to a function and you want to make a (permanent) change to the
vector, then you should pass it by reference.
— This is illustrated by the function read_scores in the program median_grade.
— Note: This is very different from the behavior of C-style arrays as parameters, which are always passed
by pointer (even without the & reference). (We’ll talk about pointers in a couple weeks!)
e What if you don’t want to make changes to the vector or don’t want these changes to be permanent?
— The answer we’ve learned so far is to pass by value.
— The problem is that the entire vector is copied when this happens! Depending on the size of the vector,
this can be a considerable waste of memory.
e The solution is to pass by constant reference: pass it by reference, but make it a constant so that it can not
be changed.
— This is illustrated by the functions compute_avg_and_std_dev and compute median in the program

median_grade.

e As a general rule, you should not pass a container object, such as a vector or a string, by value because of the
cost of copying.

WHAT SHOULD 1 DO?
Yes, it might be > 8 bytes
No, the data is <= 8 bytes (string, vector,
(bool, char, int, float, other STL containers,
double, and any pointer) and custom classes)
Is the data type large?

Are we returning
alocal variable
from a function?

Is the function expected to
initialize/modify this variable? RETURN BY COPY

We need to make a copy,
even though it’s large, because
the variable is going out of scope

Yes, the function is "returning" when the function exits.

multiple items through arguments.

Yes Is the function/receiver of
this argument or return value
allowed to modify the data?

Yes, the function is called
No because it is supposed to
modify existing program data.

Yes, the function is
providing write access to
existing program data.

A
PASS/RETURN BY REFERENCE

A\

PASS/RETURN BY COPY

j Wait... is the receiver of this data

going to make non permanent edits to No PASS/RETURN BY
the data in doing its calculations? CONST REFERENCE
Do we want to make a copy, eve
though the data is big?

Yes Isuppose we could pass by copy
(but this might look like a bug, and might be incorrectly "fixed"
by changing it to pass by reference and introduce errors!)

Yes, but we can just make an explicit copy inside the function.

	The C++ Standard Library, a.k.a. ``STL''
	Value Parameters and Reference Parameters
	C-style Arrays
	Character Arrays and String Literals (a.k.a., ``C-style strings'')
	Editing char arrays & L-Values vs. R-Values
	About STL String Objects
	Note about Strings in Java & the new Keyword
	Standard Template Library (STL) Vectors: Motivation
	STL Vectors: ``C++-Style'', ``Smart'' Arrays
	Initializing a Vector — The Use of Constructors
	Example: Using Vectors to Compute Standard Deviation
	Standard Library Sort Function
	Example: Computing the Median
	Passing Vectors (and Strings) As Parameters

