
CSCI-1200 Data Structures — Fall 2025

Lecture 5 — Pointers, Arrays, & Pointer Arithmetic

Review from Lectures 3 & 4

• C++ class syntax, designing classes, classes vs. structs;

• Passing comparison functions to sort; Non-member operators.

• More fun with const and reference (the ’&’)

• Lots of (Questionably Important) C++ Syntax

FLOWCHART: Use of const and reference with functions / parameters / return types

Whenever we write a new function or class member function, we should think carefully about
each possible location ___ in the function prototype for the const keyword and & symbol.

___ std::string ___ FOO::my_function (___ int ___ a,

___ std::vector<int> ___ b,

___ Bar ___ c,

___ Foo* ___ d) ___ {

??????

}

PASS/RETURN BY

CONST REFERENCE

(but this might look like a bug, and might be incorrectly "fixed"

No

WHAT SHOULD I DO?

RETURN BY COPY

by changing it to pass by reference and introduce errors!)

No

PASS/RETURN BY REFERENCE

Yes

No

No

PASS/RETURN BY COPY

providing write access to
existing program data.

Yes, the function is

multiple items through arguments.

Yes

Yes, but we can just make an explicit copy inside the function.

Yes, the function is "returning"

Is the data type large?

No, the data is <= 8 bytes
(bool, char, int, float,

double, and any pointer)

Yes, it might be > 8 bytes
(string, vector,

other STL containers,
and custom classes)

Is the function expected to
initialize/modify this variable?

Yes, the function is called
because it is supposed to

modify existing program data.

Are we returning
a local variable
from a function?

this argument or return value
allowed to modify the data?

Is the function/receiver of

Yes I suppose we could pass by copy

even though it’s large, because
the variable is going out of scope

We need to make a copy,

when the function exits.

going to make non permanent edits to

Do we want to make a copy, even
though the data is big?

Wait... is the receiver of this data

the data in doing its calculations?

Today’s Lecture — Pointers and Arrays

• Pointers store memory addresses.

• They can be used to access the values stored at their stored memory address.

• They can be incremented, decremented, added, and subtracted.

• Pointers are an alternative way to access the elements of C-Style array.

• Dynamic memory (will be covered in Lecture 6 on Friday) is accessed through pointers.

• Pointers are also the primitive mechanism underlying vector iterators, which we have used with std::sort

and will use more extensively throughout the semester.

• Today we’ll start drawing pictures of computer memory and data!

– This is an important skill in this course and for any future programming you do with data structures
and/or low-level, detailed computer memory manipulation.

– You will practice memory diagramming for communication with your peers and your TAs & mentors in
lab and in office hours.

– Your ability to both understand memory diagrams and to prepare new diagrams will be tested during the
exams.

5.1 Pointer Example

• Consider the following code segment:

float x = 15.5;

float *p; /* equiv: float* p; or float * p; */

p = &x;

*p = 72;

if (x > 20)

cout << "Bigger\n";

else

cout << "Smaller\n";

The output is Bigger

because x == 72.0. What’s going on?

Computer memory

Before *p=72

p

x

After *p=72

p

x 72.015.5

5.2 Pointer Variables and Memory Access

• x is an ordinary float, but p is a pointer that can hold the memory address of a float variable. The difference
is explained in the picture above.

• Every variable is attached to a location in memory. This is where the value of that variable is stored. Hence,
we draw a picture with the variable name next to a box that represents the memory location.

• Each memory location also has an address, which is itself just an index into the giant array that is the computer
memory.

• The value stored in a pointer variable is an address in memory. The statement p = &x; takes the address
of x’s memory location and stores it (the address) in the memory location associated with p.

• Since the value of this address is much less important than the fact that the address is x’s memory location,
we depict the address with an arrow.

• The statement: *p = 72; causes the computer to get the memory location stored at p, then go to that
memory location, and store 72 there. This writes the 72 in x’s location.

Note: *p is an l-value in the above expression.

2

5.3 Defining Pointer Variables

• In the example below, p, s and t are all pointer variables (pointers, for short), but q is NOT. You need the *
before each variable name.

int * p, q;

float *s, *t;

• There is no initialization of pointer variables in this two-line sequence, so the statement below is dangerous,
and may cause your program to crash! (It won’t crash if the uninitialized value happens to be a legal address.)

*p = 15;

5.4 Operations on Pointers

• The unary (single argument/operand) operator * in the expression *p is the “dereferencing operator”. It means
“follow the pointer” *p can be either an l-value or an r-value, depending on which side of the = it appears on.

• The unary operator & in the expression &x means “take the memory address of.”

• Pointers can be assigned. This just copies memory addresses as though they were values (which they are).
Let’s work through the example below (and draw a picture!). What are the values of x and y at the end?

float x=5, y=9;

float *p = &x, *q = &y;

*p = 17.0;

*q = *p;

q = p;

*q = 13.0;

• Assignments of integers or floats to pointers and assignments mixing pointers of different types are illegal.
Continuing with the above example:

int *r;

r = q; // Illegal: different pointer types;

p = 35.1; // Illegal: float assigned to a pointer

• Comparisons between pointers of the form if (p == q) or if (p != q) are legal and very
useful! Less than and greater than comparisons are also allowed. These are useful only when the pointers are
to locations within an array.

5.5 Exercise

• Draw a picture for the following code sequence. What is the output to the screen?

int x = 10, y = 15;

int *a = &x;

cout << x << " " << y << endl;

int *b = &y;

*a = x * *b;

cout << x << " " << y << endl;

int *c = b;

*c = 25;

cout << x << " " << y << endl;

3

5.6 Null Pointers

• Like the int type, pointers are not default initialized. We should assume it’s a garbage value, leftover from
the previous user of that memory.

• Pointers that don’t (yet) point anywhere useful are often explicitly assigned to NULL.

– NULL is equal to the integer 0, which is a legal pointer value (you can store NULL in a pointer variable).

– But NULL is not a valid memory location you are allowed to read or write. If you try to dereference or
follow a NULL pointer, your program will immediately crash. You may see a segmentation fault, a bus
error, or something about a null pointer dereference.

– NOTE: In C++11, we are encouraged to switch to use nullptr instead of NULL or 0, to avoid some
subtle situations where NULL is incorrectly seen as an int type instead of a pointer. For this course we
will assume NULL and nullptr are equivalent.

– We indicate a NULL or nullptr value in diagrams with a slash through the memory location box.

• Comparing a pointer to NULL is very useful. It can be used to indicate whether or not a pointer variable is
pointing at a useable memory location. For example,

if (p != NULL)

cout << *p << endl.

tests to see if p is pointing somewhere that appears to be useful before accessing and printing the value stored
at that location.

• But don’t make the mistake of assuming pointers are automatically initialized to NULL.

5.7 C-Style Arrays and Subscripting

• Here’s a short fragment of code using a C-Style array (not an STL vector).

• This example uses subscripting, [], to access each slot of the array:

const int n = 10;

double a[n];

int i;

for (i=0; i<n; ++i)

a[i] = sqrt(double(i));

• Remember: the size of array a is fixed at compile time. STL vectors act like arrays, but they can grow and
shrink dynamically in response to the demands of the application.

5.8 Stepping through Arrays with Pointers (Array Iterators)

• The array code above can be equivalently rewritten to instead use pointers:

const int n = 10;

double a[n];

double *p;

for (p=a; p<a+n; ++p)

*p = sqrt(p-a);

• The assignment: p = a; takes the address of the start of the array and assigns it to p.

• This illustrates the important fact that the name of an array is in fact a pointer to the start of a block of
memory. We will come back to this several times! We could also write this line as: p = &a[0]; which
means “find the location of a[0] and take its address”.

4

• By incrementing, ++p, we make p point to the next location in the array.

– When we increment a pointer we don’t just add one byte to the address, we add the number of bytes
(sizeof) used to store one object of the specific type of that pointer. Similarly, basic addition/subtraction
of pointer variables is done in multiples of the sizeof the type of the pointer.

– Since the type of p is double, and the size of double is 8 bytes, we are actually adding 8 bytes to the
address when we execute ++p.

• The test p<a+n checks to see if the value of the pointer
(the address) is less than n array locations beyond the start
of the array.
In this example, a+n is the memory location 80 bytes after
the start of the array (n = 10 slots * 8 bytes per slot).
We could equivalently have used the test p != a+n

• In the assignment:
*p = sqrt(p-a)

p-a is the number of array locations (multiples of 8 bytes)
between p and the start. This is an integer. The square
root of this value is assigned to *p.

• Note that there may or may not be unused memory
between your array and the other local variables. Similarly,
the order that your local variables appear on the stack
is not guaranteed (the compiler may rearrange things a
bit in an attempt to optimize performance or memory
usage). A buffer overflow (attempting to access an illegal
array index) may or may not cause an immediate failure –
depending on the layout of other critical program memory.

increasing

value

a[4]

a[5]

a[6]

a[7]

a[8]

address

10

double [] a

const int n

double* p

a[2]

a[1]

a[0]

a[3]

a[9]

a[10]

0.00

1.00

1.41

1.73

2.00

2.23

2.45

2.65

2.83

3.00

5.9 Diagramming Instances of a Custom Class & Arrays of Instances

• Let’s look at a more complicated array example... an array of custom objects!

• How does the compiler know how much space will be needed for each instance of user-defined class? It just
adds the size of each of the class member variables (rounding up for better memory alignment).

• When we create a fixed-size array of objects, we call an appropriate constructor for every slot of that structure.

• NOTE: static memory allows a sort of “better” global variable. The value persists between different calls to
the function, but it is only accessible from that scope (so it’s less dangerous to use).

• Let’s draw a detailed memory diagram for this small program in detail and study the corresponding program
output.

class Foo {

public:

Foo();

double value() const { return a*b; }

private:

int a;

double b;

};

Foo::Foo() {

static int counter = 1;

a = counter;

b = 100.0;

counter++;

}

int main() {

std::cout << "size of int: " << sizeof(int) << std::endl;

std::cout << "size of double: " << sizeof(double) << std::endl;

std::cout << "size of char: " << sizeof(char) << std::endl;

std::cout << "size of foo object: " << sizeof(Foo) << std::endl;

Foo one_foo;

double f = 3.14159;

Foo three_foos[3];

char c = 'X';

Foo another_foo;

std::cout << "foo values: " << another_foo.value()

<< " & " << three_foos[1].value() << std::endl;

}

5

Program Output:

size of int: 4

size of double: 8

size of char: 1

size of foo object: 16

foo values: 500 & 300

Foo another_foo

int a

double b

int a

double b

int a

double b

int a

double b

int a

double b

Foo three_foos[1]

Foo three_foos[2]

Foo three_foos[0]

Foo one_foo

double f

char c

5.10 Sorting an Array

• Arrays may be sorted using std::sort, just like vectors.
Pointers are used in place of iterators. For example, if a

is an array of doubles and there are n values in the array,
then here’s how to sort the values in the array into increasing
order:

std::sort(a, a+n);

5.11 Exercises

To practice pointers and pointer arithmetic, complete the following exercises using pointers and not subscripting. In
other words, don’t use the square brackets ([]) to access slots of the array!

1. Write code to print the array a backwards, using pointers.

2. Write code to print every other value of the array a, again using pointers.

3. Write a function that checks whether the contents of an array of doubles are sorted into increasing order. The
function should take in two arguments: a pointer (to the start of the array), and an integer indicating the size
of the array.

5.12 C Calling Convention – Bonus Topic!

• We take for granted the non-trivial task of passing data to a helper function, getting data back from that
function, and seamlessly continuing on with the program. How does that work??

• A calling convention is a standardized method for passing arguments between the caller and the function.
Calling conventions vary between programming languages, compilers, and computer hardware.

• In C on x86 architectures here is a generalization of what happens:

1. The caller puts all the arguments on the stack, in reverse order.

2. The caller puts the address of its code on the stack (the return address).

3. Control is transferred to the callee.

4. The callee puts any local variables on the stack.

5. The callee does its work and puts the return value in a special register (storage location).

6. The callee removes its local variables from the stack.

7. Control is transferred by removing the address of the caller from the stack and going there.

8. The caller removes the arguments from the stack.

• On x86 architectures the addresses on the stack are in descending order. This is not true of all hardware.

6

5.13 Poking around in the Stack & Looking for the C Calling Convention

• Let’s look more closely at an example of where the compiler stores our data. Specifically, let’s print out the
addresses and values of the local variables and function parameters:

int foo(int a, int *b) {

int q = a+1;

int r = *b+1;

std::cout << "address of a = " << &a << std::endl;

std::cout << "address of b = " << &b << std::endl;

std::cout << "address of q = " << &q << std::endl;

std::cout << "address of r = " << &r << std::endl;

std::cout << "value at " << &a << " = " << a << std::endl;

std::cout << "value at " << &b << " = " << b << std::endl;

std::cout << "value at " << b << " = " << *b << std::endl;

std::cout << "value at " << &q << " = " << q << std::endl;

std::cout << "value at " << &r << " = " << r << std::endl;

return q*r;

}

int main() {

int x = 5;

int y = 7;

int answer = foo (x, &y);

std::cout << "address of x = " << &x << std::endl;

std::cout << "address of y = " << &y << std::endl;

std::cout << "address of answer = " << &answer << std::endl;

std::cout << "value at " << &x << " = " << x << std::endl;

std::cout << "value at " << &y << " = " << y << std::endl;

std::cout << "value at " << &answer << " = " << answer << std::endl;

}

• Note that the first function parameters is regular integer, passed by copy. The second parameter is a passed
in as a pointer.

• Note that we can print out data values or pointers – the address is printed as a big integer in hexadecimal
format (beginning with “Ox”). This program was compiled as 32-bit program, so our addresses are 32-bits. A
64-bit program will have longer addresses.

• Let’s look at the program output and reverse engineer
a drawing of the stack:

address of a = 0xbf23eef0

address of b = 0xbf23eef4

address of q = 0xbf23eee4

address of r = 0xbf23eee0

value at 0xbf23eef0 = 5

value at 0xbf23eef4 = 0xbf23ef10

value at 0xbf23ef10 = 7

value at 0xbf23eee4 = 6

value at 0xbf23eee0 = 8

address of x = 0xbf23ef14

address of y = 0xbf23ef10

address of answer = 0xbf23ef0c

value at 0xbf23ef14 = 5

value at 0xbf23ef10 = 7

value at 0xbf23ef0c = 48

• Note: The unlabeled portions in our diagram of the stack
will include the frame pointer, the return address, temp
variables (complex C++ expressions turn into many smaller
steps of assembly), space to save registers, and padding
between variables to meet alignment requirements.

• Note: Different compilers and/or different optimization
levels will produce a different stack diagram.

0xbf23ef10
0xbf23ef0c
0xbf23ef08
0xbf23ef04
0xbf23ef00
0xbf23eefc
0xbf23eef8
0xbf23eef4
0xbf23eef0
0xbf23eeec
0xbf23eee8
0xbf23eee4
0xbf23eee0
0xbf23eedc
0xbf23eed8

0xbf23ef18

48

5
7

5

6
8

0xbf23ef10

y=
x=

b=
a=

q=
r=

answer=

0xbf23ef14

7

	Pointer Example
	Pointer Variables and Memory Access
	Defining Pointer Variables
	Operations on Pointers
	Exercise
	Null Pointers
	C-Style Arrays and Subscripting
	Stepping through Arrays with Pointers (Array Iterators)
	Diagramming Instances of a Custom Class & Arrays of Instances
	Sorting an Array
	Exercises
	C Calling Convention – Bonus Topic!
	Poking around in the Stack & Looking for the C Calling Convention

