CSCI-1200 Data Structures — Fall 2025
Lecture 9 — Iterators & STL Lists

Review from Lectures 7 & 8
e Implementing our own version of STL vector
e Classes with dynamically-allocated memory — we must write copy constructor, assignment operator, & destructor
e Algorithm Analysis, Formal Definition of Big O Notation

Today

e Another vector operation: pop_back

Erasing items from vectors is inefficient!

Iterators and iterator operations
e STL lists are a different sequential container class.

Differences between STL list and STL vector

Vec iterator implementation

Motivating example: A program to manage course enrollment with waiting list.

9.1 Review: Constructors, Assignment Operator, and Destructor

From an old test: Match up the line of code with the function that is called. Each letter is used exactly once.

Foo f1; a) assignment operator

Foox f2; b) destructor

f2 = new Foo(f1); ¢) copy constructor
| f1 = x£2; d) default constructor

delete £2; e) none of the above

9.2 Amortized Analysis (a.k.a. Average) of STL vector: :push back

template <class T> void Vec<T>::push_back(const T& val) {

if (m_size == m_alloc) {

m_alloc *= 2;

if (m_alloc < 1) m_alloc = 1;

T* new_data = new T[m_alloc];

for (size_type i=0; i<m_size; ++i)

new_datal[i] = m_datali];

delete [] m_data;

m_data = new_data;
}
// Add the value at the last location and increment the bound
m_datal[m_size] = val;
++ m_size;

}

9.3

What is the total cost of 1024 push_back operations on an initially empty STL vector?
What is the average cost of a single push_back operation?

push_back # m_alloc resize “cost” edit “cost” total “cost” of each push_back
1 0—1 1 1 2
2 1-2 2 1 3
3 2—4 4 1 5
4 4 1 1
5 4—8 8 1 9
6 8 1 1
7 8 1 1
8 8 1 1
9 8—16 16 1 17
10 16 1 1
17 16—32 32 1 33
33 32—64 64 1 65
65 65—128 128 1 129
129 128—256 256 1 257
257 256—512 512 1 513
513 512—1024 1024 1 1025
1024 1024 1 1
TOTAL COST for > 2k =
1024 push_backs: 2kl = 2047 1024 3071
AVERAGE COST: ‘ 3071/1024 = 3 = O(1)

This analysis seems complicated. I might not have figured this out on my own. Will I be expected to do Big
O Notation that is this complicated? How do I learn how to do Big O Notation?

We will be practicing lots and lots of simple Big O Notation problems throughout the rest of the term. You
will get the hang of it with practice, and asking questions during lab and office hours.

You will learn how to handle more complicated algorithm analysis problems in later courses including CSCI
2200 Foundations of Computer Science and CSCI 2300 Introduction to Algorithms!

Remove the last item from an STL vector: pop_back

We have seen how push_back adds a value to the end of a vector, increasing the size of the vector by 1. There
is a corresponding function called pop_back, which removes the last item in a vector, reducing the size by 1.

There are also vector functions called front and back which denote (and thereby provide access to) the first
and last item in the vector, allowing them to be changed. For example:

vector<int> a(5,1); // a has 5 values, all 1

a.pop_back(); // a now has 4 values
a.front() = 3; // equivalent to the statement, a[0] = 3;
a.back() = -2; // equivalent to the statement, ala.size()-1] = -2;

Exercise: How efficiently can we implement pop_back? What is the Big O Notation of pop_back?

9.4

Remove an item from the middle of an STL vector

e An important characteristic of the STL vector container class is that the items are stored in the order

9.5

the user inserted them with push_back. Even if we dynamically re-size the structure, the order of the
elements will be preserved.

For example, a course registration system could use one STL vector to maintain the names of students who
are in the course and — if the course is full (the enrollment cap has been reached) — a second STL vector to
maintain the waiting list of students who want to add the course. It is critical that the order of the second
vector be preserved — students who joined the waiting list early in the registration period should be offered
spots in the course before students who joined the waiting list at a later time.

Use pop_back to write a function named erase_at_index that removes the specified item, but preserves the
order or sequence of all other elements in the container:

template <class T>
void erase_at_index(std::vector<T> &v, int i) {

}
What is the Big O Notation of erase_at_index?

In some use cases we might not need to maintain the order of data in a vector. Perhaps we are just collecting
data that we will sum up, or sort alphabetically, etc. In our registration example, we do not need to preserve
the insertion order of students who are in the course. The instructor may choose to sort students alphabetically,
or by current grade in the course, etc.

So let’s write an alternate version that does not preserve the order (and is hopefully faster!):

template <class T>
void erase_at_index_any_order(std::vector<T> &v, int i) {

}
What is the Big O Notation of erase_at_index_any_order?

What about the opposite of erase? Can we write a function to insert an element in the middle of a vector,
while preserving the order of the rest of the data? What will the Big O Notation of your insert_at_index
operation be?

Wait... does STL vector provide erase and insert functions? Yes! Then why are we writing our own? How
do we use the STL versions of these functions? First, we need to learn about iterators!

What’s an Iterator?

Definition: An iterator
— identifies a container and a specific element stored in the container,
— lets us examine (and change, except for const iterators) the value stored at that element of the container,
— provides operations for moving (the iterators) between elements in the container,
— restricts the available operations in ways that correspond to what the container can handle efficiently.

As we will see, iterators for different STL container classes have many operations in common. This can make it
easy to modify a program that uses one container to use a different container if we change our program design
or purpose.

Iterators in many ways are generalizations of pointers: many operators / operations defined for pointers are
defined for iterators. The C++ syntax for iterators is intentionally similar to the syntax for pointers. However,
iterators and pointers are NOT the same thing for all STL containers.

9.6 Iterator Types, Variable Declarations, and Basic Operations

e Iterator types are declared by the container class. For example,

std::vector<std::string> enrolled;
enrolled.push_back("Sally");
enrolled.push_back("Bob");
enrolled.push_back("Alyssa");
std::vector<std::string>::iterator p;
std::vector<std::string>::const_iterator q;

defines two (uninitialized) iterator variables, p and g.

e So how do we initialize an iterator with an interesting value? We can use the begin() member function to
get an iterator that is attached to (sometimes we say “points to”) the first item in the vector container. Not
quite symmetrically the end() member function also gives us an iterator — but it is NOT attached the the last
item, but instead it is just beyond or after the last item in the container.

enrolled.begin();
enrolled.end();

p
q

e We can change the container that a specific iterator is attached to as long as the types match:

std::vector<double> some_data(10, 3.14);

std: :vector<double> more_data(20, 6.02);

std: :vector<double>::iterator v_itr = some_data.begin();

v_itr = more_data.begin(); // this is ok!

v_itr = enrolled.begin(); // type mismatch, compilation error!
std::string s = "tiger";

std::string::iterator s_itr = s.begin();

s_itr = some_data.begin(); // type mismatch, compilation error!

We cannot switch to a vector templated over a different type, or to a different type of container (e.g., STL
string is actually a “container” holding char type):

e Once we have an iterator, we use the dereference operator access the value stored at an element of the container.
This syntax is intentionally similar to pointers! We can use a dereferenced iterator r-value, e.g., to print the
value:

std::cout << "before editing: " << *p << std::endl;

Or we can use a dereferenced iterator as an l-value (as long as it is not a const_iterator). The example below
changes the first entry in the enrolled vector from “Sally” to “Susan”.
*p = "Susan";
e The dereference operator is combined with dot operator for accessing the member variables and member

functions of elements stored in containers. Here’s an example using the Student class and students vector
from Lecture 4:

std::vector<Student>::iterator itr = students.begin();

(*itr) .compute_averages(0.45) ;
This operation would be illegal if itr had been defined as a const_iterator because compute_averages is a
non-const member function. The parentheses on the *i are required (because of operator precedence).

There is a “syntactic sugar” for the combination of the dereference operator and the dot operator, which
intuitively looks like a little arrow, which is exactly equivalent:

itr->compute_averages(0.45);

e Just like pointers, iterators can be incremented and decremented using the ++ and -- operators to move to the
next or previous element of any container.

++itr; itr++; --itr; itr--;
These operations move the iterator to the next and previous locations in the vector, list, or string. The

operations do not change the contents of container! Section 9.10 includes an example with the difference pre-
& post- increment & decrement.

e Iterators can be compared using the == and != operators. This is helpful when we want to write a loop over
all the data in a container.

for (std::vector<std::string>::iterator itr = enrolled.begin(); itr != enrolled.end(); itr++) {
std:cout << *itr << " is enrolled in the course." << std::emndl; }

NOTE: Remember that .end () is NOT the last element in the container, but the slot AFTER the last element.

9.7

9.8

STL’s erase function takes in an iterator argument
Here’s an example showing how to use STL’s erase member function:

std::vector<std::string>::iterator p = enrolled.begin();
++p;
std::vector<std::string>::iterator q = enrolled.erase(p);

After the code above is executed:
— The string value stored in the second entry of the vector has been removed.
— The size of the vector has shrunk by one.

— The return value of erase, which we stored in the iterator q, refers to the item that was the third entry
and is now the second. (And any other data in the vector after the third location has also been shifted
one spot to the left.)

It is common to reuse the iterator p for the return value:
std::vector<std::string>::iterator p = enrolled.begin();

++p;
p = enrolled.erase(p);

Unfortunately, the built-in erase function for STL vector is O(n). It is just as expensive as the version we
wrote earlier because it shifts all the data to preserve the sequence.

The list Standard Library Container Class

When items are continually being inserted and removed from the middle of a sequence of values (where the
order must be preserved), vectors are not a good choice for the container.

Instead, let’s learn about lists, our second STL container class!

Both lists & vectors store sequential data that can shrink or grow dynamically. However, the use of memory is
fundamentally different. Vectors are formed as a single contiguous array-like block of memory. Lists are formed
as a sequentially linked structure instead.

array/vector: list:

Y
o
Y

©
Y

[
Y

©

715|8]1]9 7

0 1 2 3 4

The syntax for erasing from an STL list is the same as for vector:

std::1list<std::string>::iterator p = enrolled.begin();
++p;
std::1list<int>::iterator q = s.erase(p);

P
R
7|45+ 8|1+ 1|+ 0
p q
kY
7 = 8|t 1|19

NOTE: The iterator p passed into the the STL list::erase function is now INVALID. You should not attempt
to dereference and read or write this iterator — that would be a memory error.

The necessary edits to the memory to preserve the order of data stored in a list are more localized. We don’t
need to shift all the data, we can just bypass the removed element. Therefore, the 1ist version of erase has
Big O Notation O(1).

9.9 Insert

e STL provides an insert function for both STL 1ist and vector that takes an iterator and a value and adds
a link in the chain with the new value immediately before the item pointed to by the iterator.

The call returns an iterator that points to the newly added element. Other variants of the insert function are
also available in the full STL specification.

Insert is O(1) for 1ist and O(n) for vector.

Thus, both insert and erase should be AVOIDED or USED SPARINGLY with large vectors.

9.10 Common Confusions / Mistakes with STL Iterators
NOTE: The example syntax below is the same for STL vector and STL lists.

std: :vector<int> data;
std::vector<int>::iterator
//std::list<int> data;
//std::1list<int>::iterator

itr,itr2,itr3;
itr,itr2,itr3;

data.push_back(100);
data.push_back(300) ;

data.push_back(200) ;
data.push_back(400); data.push_back(500);

itr = data.begin(); // itr is pointing at the 100

++itr; // itr is now pointing at 200
*itr += 1; // 200 becomes 201
// itr += 1; // NOTE: this syntax only works for vector/vector iterator
// but it does not compile for list/list iterator
// list iterators cannot be advanced like this
itr = data.end(); // itr is pointing "one past the last legal value" of data
itr-—; // itr is now pointing at 500;
itr2 = itr-——; // itr is now pointing at 400, itr2 is still pointing at 500
itr3 = --itr; // itr is now pointing at 300, itr3 is also pointing at 300

// dangerous: decrementing the begin iterator is

"undefined behavior"

// (similarly, incrementing the end iterator is also undefined)

// it may seem to work, but break later on this machine or on another machine!
itr = data.begin();

itr--; // dangerous!

itr++;

assert (xitr == 100); // might seem ok... but rewrite the code to avoid this!

9.11 More STL vector vs. STL 1list: What’s the same? What’s different?

e Although the interface (public member functions) of lists and vectors and their iterators are quite similar, their
implementations are VERY different. Clues to these differences can be seen in the operations that are NOT in
common, such as:

e STL vectors (& C-style arrays) allow indexing / subscripting ([1), a.k.a. “random-access”. That is, we can
immediately jump to an arbitrary location within the vector / array. STL 1ists have no subscripting operation
(we can’t use [] to access data in a 1ist). The only way to get to the middle of a list is start at the beginning
(or end) of the list and follow pointers one link at a time.

e Random access also means that we can add (or subtract) an integer to a vector iterator, which will jump the
iterator immediately, in O(1) constant time, to the specified location. We can do this jump because the slots
of a vector are guaranteed to be contiguous/adjacent and the compiler can perform simple arithmetic on the
memory addresses to calculate the relative position of any other slot in the same vector. For example:

std: :vector<double> even_more_data(1000,3.14);
std: :vector<double>::iterator v_itr = even_more_data.begin() + 42;
*v_iter = 6.02; // same result as typing: even_more_datal[42] = 6.02;

v_itr = v_itr + 100; // v_itr is now 'pointing' to: even_more_datal[142]

We cannot perform these integer jumps with a list iterator, because the memory allocations for each data value
in a list are separate and are not guaranteed to contiguous or adjacent.

e Pointer arithmetic also allows us to compare vector iterators using <, >, <=, >=. These comparisons are not
available for 1ist iterators — which can only be compared with = and !=.

e STL 1lists have push_front and pop_front functions in addition to the push_back and pop_back functions
available for both vectors and lists.

e Both containers can be sorted efficiently! STL provides built-in O(n log n) sorting for both containers. However
the syntax to sort the containers is different:

std::vector<int> my_vec;

std::1list<int> my_lst;

// ... put some data in my_vec & my_lst

std: :sort(my_vec.begin() ,my_vec.end() ,optional_compare_function);
my_lst.sort(optional_compare_function) ;

We can provide an optional compare function for our data whether we use an STL vector or an STL 1ist.

e Several operations invalidate the values of vector iterators, but not list iterators:
— erase invalidates all iterators after the point of erasure in vectors;
— push_back and resize invalidate ALL iterators in a vector

The value of any associated vector iterator must be re-assigned / re-initialized after these operations.

9.12 Implementing Vec<T> Iterators
e So, how do we add iterators to our Vec<T> class declaration from Lecture 77

public:
// TYPEDEFS
typedef T* iterator;
typedef const T* const_iterator;

// MODIFIERS
iterator erase(iterator p);
iterator insert(iterator p, const T &element);

// ITERATOR OPERATIONS

iterator begin() { return m_data; }

const_iterator begin() const { return m_data; }
iterator end() { return m_data + m_size; }
const_iterator end() const { return m_data + m_size; }

e First, remember that typedef statements create custom, alternate names for existing types.

Vec<int>::iterator is an iterator type defined by the Vec<int> class. It is just a T * (an int *). Thus,
internal to the declarations and member functions, T* and iterator may be used interchangeably.

e Because the underlying implementation of Vec uses an array, and because pointers are the “iterator”’s of arrays,
the implementation of vector iterators is quite simple. Note: the implementation of iterators for other STL
containers is more involved!

e Thus, begin() returns a pointer to the first slot in the m_data array. And end () returns a pointer to the “slot”
just beyond the last legal element in the m_data array (as prescribed in the STL standard).

e Furthermore, dereferencing a Vec<T>::iterator (dereferencing a pointer to type T) correctly returns one of
the objects in the m_data, an object with type T.

e And similarly, the ++ —- <, == != >= etc. operators on pointers automatically apply to Vec iterators.

e The erase and insert functions are multi-line functions, require a loop over all data after the specified edit
position. insert may require the allocation be resized (if m_alloc == m_size).

e Finally, note that after a push_back or erase or resize call some or all iterators referring to elements in that
vector may be invalidated. Why? You must take care when designing your program logic to avoid invalid
iterator bugs!

{ f23T++ (PUnoFi) 3T

{0 uanjzex !PT == I3Tx = punozy
{ } (()pus-BUTITEM = IIT 33 Punojj) STTYM
{ {Tpu®::pP3s >> I3Tx >> IN0OD::pP3S } (I3T++ {()pue-buritem =; 13T {()utbeq-buriTem = I3T) IOF f()utbsq-burytem = I3T
{,u\:I9pI0 BUTMOTTOF SYy3 uUT 3ISTT HuT3iTem Syjz uo =Ie sjuspnisu\, >> 1N0D::P3s fosTeRI = punoy
} (()A3dwe-buTiTemi) IFT 3ISTT buT3iTem 8Yy3 UO ST uspnis ayj JI 99s 03 ¥od9yn //

{ {Tpu@::p3as >> I3Tyx >> JNOD::P3S } (IAT++ ¢ ()pus-palToaus =; IIT {()uTrbaqg-pealloius =
{13T I03@I8]T

{,u\u\:SseT> SYy3 UT oI s3juspnis HuTMOTTOF Syl ‘poraad FUSWTTOIUS SY3 JO PuUS 9Y3 IYu\, >> 3JN0D::pP3s !Tpua::p3is >> ,°9SINOD BY3 UT MOU DI S3UIPNJSs ,, >> ()SZTS'PIS[TOIUS >> IN0D: :pP3s
!{()3x0s paTTOIUS } es1®

andano eoru swos // {Tpus::p3s >> ,°3ISTT BuTiTem oy3z uo uTewWSI S3USPNIS , >> ()92TS HUTITEM >> JNOD: :pP3S

f£()3uoxz dod-buTriTem

} esT®

{

{(enx13) OTTYM !Tpu PaIs >> ,"3ISTT Buritem 9Yy3z woxzy SSINOD °Y3l 03 POPPE , >>
{ ()3uoxz-buriTem >> , JusSpnisg, >> 1N0D::pP3s
{ {(()3uoaz-buritem)yoeq ysnd-paTToIus
{ } (0 < ()ozTs-buritem) 3T
{(buT3iTEM ‘PSTTOIUS ‘PT)IUSPNIS” DAOWSIT {Tpus::p3s >> ,°©SINOD 9Y3 WOIF pSAocweI , >> PT >> , IUSPN3S, >> 1IN0D::P3S
} esT® { !{(I3T7)Oseas parToIuU
f(but3item ‘paTTOIUS ‘s3jusSpnisT xew ‘pT)3uspnis” [TOIUS "3STT burlTemM Byl WOIJ uUSYP] ©q UPD JUSPNIS B JT 985 puP JUSPNIS Y3 sAowdy //
} (0 == uotido) 3T °sT® { } (punoz) 3T
{1 uanjsx {
{,u\ ‘9&q-poon -3andut TeHSTTI, >> INOD::pP3s {13T++ (punoji) 3IT
} ((PT << uTo::pas)i) 3IT {PT == I3T4« = punogy
{, :PT juSpn3s I9jum, >> IN0D::pP3s } (()pus-peTToIUS ={ I3T 3% PUNOF|) STTYM
!PT PuTIIS::pP3S !{()utbeq- peTTOIUS = IJT I03BID]T::<DPUTIIS::PIS>ISTT::P3IS
I 10 ¢ st uor3ido // } ®sT® { {asTel = punol Tooq
f,u\"utebe Az -uorizdo PTTeAUI, >> 3INOD::pP3S “3STT ©SINnoo 8y3z uo ST Juspnis oyjl JT 99S 03 ¥o8yD //
} (T =i uoTtado 3% o =j uorido) IFT osTS { } (butitem 3<PUTIAS::PIS>ISTT::P3IS ‘pPa[[OIuUa 3<BUTIIS::PIS>ISTT::P3IS
rdooT 8y3 jo 3no buryeexq Aq 3Tnb // !jesaq ‘PT 3DUTIIS::PIS 3ISUOD) JUSPNIS SACWSI PTOA
} (g == uot3do) 3IFT °sT® { rasanoo eyl ur peoerd ST 3ISTT burirem oyl uo uoszad 3sITI oyl usyl ‘307s e dn suado asinod //
{1 uanzex oyl woiy juspnis oy3 buraowsi FI "ISTT bUTITEM OY3 WOIF IO 9SIN0OD SY3J WOIJ JUSPNIS © 2aA0wsy //
{,u\ 2&q-pooy -3ndurt TeBSTTI, >> 1INO0O::pP3s
r7res 3snl usyj ‘zebejur 3ndur 8y3l peer 3,ued am JT // } ((uotado << uTlD::p3S)i) IFT
fuotido 3uT {
!, <== uotido =dAy, >> {Tpus::p3s >> ,"3ISTT Bur3item sy3 uo =xe sjuspnis , >> ()SZTS HuUTITEM >>
wu\z odA3 pus or , >> WU\ "3ISTT Buratem sy3 o3 peppe useq sey , >> PT >> , 3IUSPNIS TINF ST OSINOD SYL, >> IN0D::pP3IS
WU\T °d43 juspnis e Laowex OF ., >> £(pT) 3oeq ysnd-buriTes
Wu\0 °d43 juepnis e [T0IUS OL , >> *3STT HUTITEM Y3 03 3JuUSpn3is ayz ppe ‘3ou yI1 //
wu\:suot3idou\, >> 3IN0O::p3s {
(0 == ()®zTs'buriTem || s3juspnis Xew == ()9ZTS'PaTTOIUS) 3IISSSE {
! (sjuspnis” XewW => ()8ZTS°Pa[[OIU) 3JISSS®E {uanjex
juerIRAUT Y3 (FO 37ed) YOOUD)/ {Tpus::p3s >> ,"3ISTT bur3item sy3 uo Apesare ST , >> PT >> , 3IUSPNIS, >> 3IN0D::pP3s
} op b o(PT == I3T«) IT
A3dwe sT buT3iTEM USY] (S3IUSPNISTXBW =; ()SZIS'POTTOIUS) PSTTIF FOU ST 25In00 2Yy3 JFI (¥) // } (33T++ f()pue-buriTem =i 3T ! ()urbeq-buTriTem = IIT) IOF
‘sjuepnis xew => ()ezIrs‘'pearroaus (¢g) // ©3STT burirem oy3z uo ApeeiTe ST Juspnis oyjz JT 99s 03 o9yd //
dn suado jods e JT (3senbal JO I9pI0 8yl UT) pajjTwpe ogq [[ITM Oym sjuspnis surejuoo burirem (z) // {
“9sIn00 8y3 UT Apepeile sjuspnis 8yl SuTe3UOD parroIus (1) // {uanyex
:queraeaur // . "©SINOD SY3 UT MOU SIe S3USPN3s , >> ()OZTS PI[TOIUD >>
wu\'PepPPE , >> PT >> , 3IUSPN3g, >> 1IN0D::pP3s
{putyTem <BUTIIS::PAS>ISTT: :P3IS {(pT) yoeq ysnd-paTroIus
{peTTOoIUS <BUTIIS::PIS>ISTT::P3Is } (s3juepnis™xew > ()9zTIs'pa[IoIus) 3IFT
s10300A 8yl 9ZTTPIITUL // ‘juepnis ey3 ppe ‘TTnF 3,UST 9sinod ayz I //
{
/S3UepPN3sTXBW << UTD::p3s {
{,U\POMOTT® S3USPN3s JO ISCUNU WAWTXEW SY3 ISJUFU\Q0ZT IDSD Io3F wexboxd juswrToIUmuU\, >> JNOD::pP3S {uznjyex
!{sjuspnis”xew jur poubrsun {Tpus::p3s >> ,"poIToIu Apesare ST , >> PT >> , 3IUSPNIS, >> 3IN0D::pP3s
9sINn00 9y3 UT S3uspnis JO ISQqUNU WNWIXPW 9Yy3 UT peay // } (PT == I3T4) 3T
} ()urew jut } (23T++ ! ()PUSTPSTTOIUS ={ IIT !()UTHSQ"PSTTOIUS = I3T) IOF
{137 103eI93T::<BUTIIS::PIS>ISTT: :P3IS
{ ‘perT0IUS ApeaiTe ST juspnis 8yl I 238s 03 ¥oayd //
{ } (buTaTem 3<BUTIAS::PIS>IASTT::PIS ‘POTTOIUS R<PUTIIS::PIS>IASTT: :P3IS
{ ‘sjuspnis” xeuw 3uT paubTsun ‘pT 3BUTIY P31S 3Suod) juspnis” TTOIUD PTOA
{Tpus::p3s >> ,3ISTT Bur3iTem Sy3z Iou SSINOD SY3 ISYITOU UT ST , >> *3STT buT3ITeM UO IO 95IN0O UT AppeITe J0uU ST Juspnis 8yj pue wooI ST 8I9y3 JT 3Juspnis e [rouyg //
PT >> , 3USPN3s, >> 3N0D::p3s
} est® {
{Tpus::p3is >> ,°3ISTT DBur3iTem oyl uo uTewsx s3juspnis , >> ()9ZTS HUTITEM >> <3I9SSED> SPNTOUTH
WU\ 3STT BuT3iTem sy3 woxy psaowsx , >> PT >> , IUSPAIS, >> IN0D::P3s <3STT> opnIouT#
{(x37)9sex9-butiTem <bBbutays> spnouT#
} (punoz) 3T <WesaI3SOT> SPNIOUTH

<ury3itIobTe> SpnIouT#

ddo" L.STT 3s1Isse[d 8P:TE:S0
ST/0£/60

	Review: Constructors, Assignment Operator, and Destructor
	Amortized Analysis (a.k.a. Average) of STL vector::push_back
	Remove the last item from an STL vector: pop_back
	Remove an item from the middle of an STL vector
	What's an Iterator?
	Iterator Types, Variable Declarations, and Basic Operations
	STL's erase function takes in an iterator argument
	The list Standard Library Container Class
	Insert
	Common Confusions / Mistakes with STL Iterators
	More STL vector vs. STL list: What's the same? What's different?
	Implementing Vec<T> Iterators

