CSCI-1200 Data Structures — Fall 2025
Lecture 11 — Doubly-Linked Lists & List Implementation

Review from Lecture 10
e Review of iterators, implementation of iterators in our homemade Vec class
e Starting our own basic linked list implementation
e Implementation of a few functions with a single chain of forward links

e Discussed how singly-linked lists don’t match the STL list implementation.
Today’s Lecture
e Limitations of singly-linked lists

e Our own version of the STL 1ist<T> class, named dslist,

Implementing list iterators

Writing push_back, insert, erase, and copy_list,
e Common mistakes, unfortunately necessary typename syntax

o If we have time... Compare & Contrast: STL vector vs. STL list and Implementing Vec<T>: :iterator

11.1 Inserting a Node into a Singly-Linked List

e With a singly-linked list, we’ll need a pointer to the node before the spot where we wish to insert the new
item. NOTE: This is not how STL list’s insert function works!

e Let’s say that p is a pointer to this node, and x holds the value to be inserted. First, edit the diagram below
to illustrate how to set the pointer p to insert the value 100 between 25 & 30.

head | —F—{ value 20 | [Palue 25| (¥ value 30| > value 35

ptr — ptr — ptr — ptr NULL

e Then, write a fragment of code that will do the insertion.

e Note: This code will not work if you want to insert a new value at the front of the linked list. Why not?

11.2 Exercise: Removing a Node from a Singly-Linked List
e The remove operation itself requires a pointer to the node before the node to be removed.

e Suppose p points to a node that should be removed from a linked list, q points to the node before p, and head
points to the first node in the linked list. Label & edit this diagram to remove 30 from the middle of this list:

head E’—> value 20 j value 25 JV value 30 JV value 35

ptr — ptr — ptr — ptr NULL

e Write code to remove the node pointed at by p. First focus on the general case, when the item to remove is in
the middle of the list.

e What about the “corner cases”? What should happen if we want to remove the first item? or the last item?
or the only item in list where length = 17 Draw a diagram for each scenario.

e Update your code above to handle all of these corner cases.

11.3 Exercise: Singly-Linked List Copy

Write a recursive function to copy all nodes in a linked list to form an new linked list of nodes with identical structure
and values. Here’s the function prototype:

template <class T> void CopyAll(Node<T>* old_head, Node<T>*& new_head) {

11.4 Limitations of Singly-Linked Lists

e We can only move through it in one direction

head‘ —’—V value 20 J—V value 25 J—V value 30 J—V value 35

ptr — ptr — ptr — ptr NULL

e We need a pointer to the node before the spot where we want to insert or erase.
e Appending a value at the end requires that we step through the entire list to reach the end.

e So what can we do? There are three common generalizations (can be used separately or in combination):
— Doubly-linked: allows forward and backward movement through the nodes
— Circularly linked: simplifies access to the tail, when doubly-linked

— Dummy header node: simplifies special-case checks

11.5 Transition to a Doubly-Linked List Structure

e The revised Node class has two pointers, one going “forward” to the successor in the linked list and one going
“backward” to the predecessor in the linked list.

template <class T> head P
class Node {
public: tail
T value_;
Node<T>* next_; value 13 value 1 value 3 value ¢
Node<T>* prev._; next next next next NULL
b NULL prev prev prev prev

e We will have a head pointer to the beginning and a tail pointer to the end of the list.

e Is the tail pointer necessary to access the data? No, but it facilitates efficient implementation of push_back
and other important list operations.

e If we have the tail pointer, do we still need the list to be doubly-linked?

e Overall, the doubly-linked structure uses more memory, and is twice as much work to edit! But the speedup
of some operations is significant. We will often face this type of tradeoff: Is it worth the extra memory cost to
get a runtime speedup?

11.6 The dslist Class — Overview

e Our templated class dslist implements much of the functionality of the std::1ist<T> container and uses a
doubly-linked list as its internal, low-level data structure. The code is attached at the back of this handout.

e Three classes are involved: the node class, the iterator class, and the dslist class itself.
Below is a basic diagram showing how these three classes are related to each other:

dslist<float>

Node<float>* head_: -—l
Node<float>* tail_:
intsize_: 3

list_iterator<float>

Node<float>* ptr_:

float value_: 3.14
Node<float>* next_: Node<float>* next_:
Node<float>* prev_: NULL Node<float>* prev_:

A 3

float value_: 6.02 float value_: 1.61
Node<float>* next_: NULL

Node<float>* prev_:

e For each list object created by a program, we have one instance of the dslist class (the manager), and multiple
instances of the Node (one for each value). For each iterator variable (of type dslist<T>::iterator) that is
used in the program, we create an instance of the 1list_iterator class.

11.7 The Node Class

e It is ok to make all members public because individual nodes are never seen outside the list class.
(Node objects are not accessible to a user through the public dslist interface.)

e Another (better) option to ensure the Node member variables stay private would be to nest the entire Node
class inside of the private section of the dslist declaration. We’ll see an example of this later in the term.

e Note that the constructors initialize the pointers to NULL.

11.8 The Iterator Class

e Unfortunately, unlike our Vec class and the STL vector class, we can’t simply typedef the iterator as just a
pointer and get the desired functionality for free.

e We have to define a separate class that stores a pointer to a node in a linked list.
e The iterator constructor initializes the pointer. It is only called from dslist<T> class member functions.
e Stepping through the chain of the linked-list is implemented by the increment and decrement operators.

e The dereference operator, operator*, gives access to the contents of a node.
(The user of a dslist class is never given full access to a Node object!)

e Two comparison operations: operator== and operator!=. Other comparisons (e.g., < or >) are not allowed.

e dslist<T> is a friend class, which allows access to the iterator’s ptr_ pointer variable
(needed by dslist<T> member functions such as erase and insert).

11.9 The dslist Class
e Manages the actions of the iterator and node classes. Interfaces with the user through member functions.

e Maintains the head and tail pointers and the size of the list.

Typedef for the iterator name.

Prototypes for member functions, which are equivalent to the std: :1ist<T> member functions.

As a class managing dynamically-allocated memory, it must implement the “big 3”: copy constructor, assignment
operator, and destructor. These are implemented with private copy_list and destroy_list helper functions.

11.10 Exercise: Implement dslist: :push _back

e Edit the diagram below to push back a new value to the list.

dslist<float>

Node<float>* head_: -7
Node<float>* tail _:
intsize_: 3

list_iterator<float>

Node<float>* ptr_:

float value_: 3.14
Node<float>* next_: Node<float>* next_:
Node<float>* prev_: NULL Node<float>* prev_: |

3 A

e Now write the code for push_back. Make sure to handle the corner case starting with an empty list.

float value_: 6.02 float value_: 1.61
Node<float>* next_: NULL

Node<float>* prev_: |

11.11 Exercise: Implement dslist::insert

e Suppose we want to insert a new node containing the value 7.5 before the node containing the value 6.02. We
have an iterator, which is a wrapper around a Node pointer, attached to the Node containing 6.02.

dslist<float>

Node<float>* head_: -7
Node<float>* tail _:
intsize_: 3

list_iterator<float>

Node<float>* ptr_:

float value_: 3.14
Node<float>* next_: Node<float>* next_:
Node<float>* prev_: NULL Node<float>* prev_: |

A K

float value_: 6.02 float value_: 1.61
Node<float>* next_: NULL

Node<float>* prev_: |

e What must happen? First, let’s make the edits to the diagram above...
— The new node must be created, using another temporary pointer variable to hold its address.
— Its two pointers must be assigned.
— Two pointers in the current linked list must be adjusted. Which ones?
Assigning pointers for the new node MUST occur before changing pointers of the existing linked list nodes!

e Now write the code as just described. Focus first on the general case: Inserting a new into the middle of a list
that already contains at least 2 nodes.

e Then let’s think about the corner cases. Do we need to write any additional code to handle the special cases
of empty list, one element lists, inserting at the front or back of the list?

11.12 Exercise: Implement dslist: :erase
e Now instead of inserting a value, suppose we want to remove the node pointed to by the iterator?

e Two pointers need to change before the node is deleted! All of them can be accessed through the iterator’s
pointer variable. First edit the diagram below:

dslist<float>

Node<float>* head_: -
Node<float>* tail_:
intsize_: 3

list_iterator<float>

Node<float>* ptr_:

float value_: 3.14
Node<float>* next_:
Node<float>* prev_: NULL

float value_: 6.02
Node<float>* next_:
Node<float>* prev_: |

float value_: 1.61
Node<float>* next_: NULL
Node<float>* prev_: |

e Now write the code:

e Again, we must consider all corner cases / special cases:

— If p==head and p==tail, the single node in the list must be removed and both the head and tail pointer
variables must be assigned the value NULL.

— If p==head or p==tail, then the pointer adjustment code we just wrote needs to be specialized to removing
the first or last node.

11.13 Exercise: Implement dslist::copy_list

e Now let’s write the helper function copy_list.

11.14 Basic Linked Lists Mechanisms: Common Mistakes

Here is a summary of some common mistakes. Review this list when you get stuck on HW or a Test.

Allocating a new node (using new) to step through the linked list — when only a pointer variable is needed!
Confusing the . and the -> operators. (The compiler will help you — except on a test!)

Not setting the pointer from the last node to NULL.

Not considering all special cases: inserting / removing, first or last element, only 1 element, empty list, etc.

Applying the delete operator to a node (calling the operator on a pointer to the node) before it is appropriately
disconnected from the list. Delete should be done only after all pointer manipulations are completed.

Pointer manipulations that are out of order. These can ruin the structure of the linked list.

Trying to use STL iterators to visit elements of a “home made” linked list chain of nodes.
(And the reverse.... trying to use ->next and ->prev with STL list iterators.)

11.15 Unfortunate C++ Template Implementation Detail - Using typename

e The use of typedefs within a templated class, for example the dslist<T>::iterator can confuse the compiler
because it is a template-parameter dependent name and is thus ambiguous in some contexts. (Compiler asks:
Is “iterator” a value or is it a type?)

e If you get a strange error during compilation (where the compiler is clearly confused about seemingly clear
and logical code), you will need to explicitly let the compiler know that it is a type by putting the typename
keyword in front of the type. For example, inside of the operator== function:

typename dslist<T>::iterator left_itr = left.begin();

e Don’t worry, we’ll never test you on where this keyword is needed. Just be prepared that you may need to use
it when implementing templated classes that use typedefs for the homework.

11.16 Compare & Contrast: STL vector vs. STL 1list
e Same: Both are templated, sequential containers.

e Different: Only vector can be accessed using subscript (a.k.a. random-access).
(Note: Implementing a similar operation for 1ist would be inefficient.)

std: :vector<double> v(10, 3.14);
std::cout << v[4] << std::endl;
v[5] = 6.02;

e Same: Elements of both can be accessed by iterators, using the dereference operator. The syntax for iterators
with vector and 1list was intentionally designed to be similar to pointers with arrays.

// std::vector<double> container (10, 3.14);

// std::vector<double>::iterator itr = container.begin();
std::list<double> container (10, 3.14);
std::list<double>::iterator itr = container.begin();

for (itr = container.begin(); itr != container.end(); itr++) {
if (xitr < 0.0) {
*itr = 0.0;
}
}

e Same: Iterators can be incremented or decremented to visit all elements in order within the container.
++itr; itr++; --itr; itr--;

These operations move the iterator to the next and previous locations in the vector, list, or string.
The operations do not change the contents of container!

Same: We can use == and != with vector, list, and string iterators.

Different: We can use <, <=, > and >= vector and string iterators, but not with list iterators. Why not?
We’ll talk about that in the next section...

Different: Ounly vector iterators can jump forward (or backward) by an arbitary integer number of “slots”.
(Note: Implementing a similar operation for 1ist would be inefficient.)

std: :vector<double>::iterator v_itr = v.begin();
v_itr = v_itr + 5;

e Same: Both have push_back and pop_back. These operations are constant time for list, and constant time
on average for vector.

Different: Only 1list has push front and pop_front. These are constant time, O(1), operations.
(Note: Implementing similar operations for vector would be inefficient.)

Same: Both have erase and insert.

Different: . . . however, while they are constant time, O(1), operations for 1ist, they are linear time, O(n),
operations for vector.

e Same: Both have a built in sort that runs in O(n log n), with an optional comparison function.
Different: The syntax is slightly different.

std: :sort (my_vector.begin() ,my_vector.end() ,optional_comparison_function);
my_list.sort(optional_comparison_function);

e Different: Situations in which iterators are invalidated.
— Iterators positioned on an STL vector, at or after the point of an erase operation, are invalidated.

— Iterators positioned anywhere on an STL vector may be invalid after an insert (or push_back or resize)
operation. Why? Because the array might need to be resized & reallocated (re-located) on the heap.

— Tterators attached to an STL list are not invalidated after an insert or push_back/push_front or
erase/pop_back/pop_front. (Except iterators attached to the erased element!)

11.17 Implementing Vec<T> Iterators
o Let’s add iterators to our Vec<T> class declaration from Lecture 6:

public:
// TYPEDEFS
typedef T* iterator;
typedef const T* const_iterator;

// MODIFIERS
iterator erase(iterator p);

// ITERATOR OPERATIONS

iterator begin() { return m_data; }

const_iterator begin() const { return m_data; }
iterator end() { return m_data + m_size; }
const_iterator end() const { return m_data + m_size; }

e First, remember that typedef statements create custom, alternate names for existing types.

Vec<int>::iterator is an iterator type defined by the Vec<int> class. It is just a T * (an int *). Thus,
internal to the declarations and member functions, T* and iterator may be used interchangeably.

e Because the underlying implementation of Vec uses an array, and because pointers are the “iterator”’s of arrays,
the implementation of vector iterators is quite simple. Note: the implementation of iterators for other STL
containers is more involved! We’ll see how STL list iterators work in a later lecture.

e Thus, begin() returns a pointer to the first slot in the m_data array. And end () returns a pointer to the “slot”
just beyond the last legal element in the m_data array (as prescribed in the STL standard).

e Furthermore, dereferencing a Vec<T>::iterator (dereferencing a pointer to type T) correctly returns one of
the objects in the m_data, an object with type T.

e And similarly, the ++, -- <, == !=>= etc. operators on pointers automatically apply to Vec iterators. We
don’t need to write any additional functions for iterators, since we get all of the necessary behavior from the
underlying pointer implementation.

10/07/25
02:57:06 dslist.h

#ifndef dslist_h_

#define dslist_h_ // Comparions operators are straightforward
#include <cassert> bool operator==(const list_iterator<T>& r) const {
return ptr_ r.ptr_; }
// A simplified implementation of the STL list container class, bool operator!=(const list_iterator<T>& r) const {
// including the iterator, but not the const_iterators. Three return ptr_ != r.ptr_; }
// separate classes are defined: a Node class, an iterator class, and
// the actual list class. The underlying list is doubly-linked, but // the dslist class needs access to the private ptr_ member variable
// there is no dummy head or tail node and the list is not circular. friend class dslist<T>;
// private:
// NODE CLASS // REPRESENTATION
template <class T> Node<T>* ptr_; // ptr to node in the list
class Node { };
public:
// CONSTRUCTORS: set the pointers to NULL /) == - - -
Node () : next_ (NULL), prev_ (NULL) {} // LIST CLASS DECLARATION
Node (const T& v) : value_ (v), next_ (NULL), prev_ (NULL) {} // Note that it explicitly maintains the size of the list.
// REPRESENTATION
T value_; template <class T>
Node<T>* next_; class dslist {
Node<T>* prev_; public:
}i // default constructor, copy constructor, assignment operator, & destructor
dslist () : head_(NULL), tail_(NULL), size_(0) {}
// A "forward declaration" of this class is needed dslist (const dslist<T> &old) { copy_list (old); }
template <class T> class dslist; dslist& operator= (const dslist<T>& old);
“dslist () { destroy_list(); }
//
// LIST ITERATOR // typedef allows use of ’dslist<int>::iterator’ syntax
template <class T> typedef list_iterator<T> iterator;
class list_iterator {
public: // simple accessors & modifiers
// default constructor, copy constructor, assignment operator, & destructor unsigned int size() const { return size_; }
list_iterator (Node<T>* p=NULL) : ptr_(p) {} bool empty() const { return head_ == NULL; }
// NOTE: the implicit compiler definitions of the copy constructor, void clear() { destroy_list(); }

// assignment operator, and destructor are correct for this class.
// read/write access to contents

// The dereferencing operator gives access to the value within the Node. const T& front () const { return head_->value_; }
T& operator* () { return ptr_->value_; } T& front () { return head_->value_; }
const T& back() const { return tail_ ->value_; }

// pre-increment, e.g., ++iter T& back() { return tail_ ->value_; }
list_iterator<T>& operator++ () {

ptr_ = ptr_->next_; // modify the linked list structure

return *this; void push_front (const T& v);
} void pop_front ();
// post—-increment, e.g., iter++ void push_back (const T& v);
list_iterator<T> operator++ (int) { void pop_back () ;

list_iterator<T> temp (*this); iterator erase(iterator itr);

ptr_ = ptr_->next_; iterator insert (iterator itr, const T& v);

return temp; iterator begin() { return iterator(head.); }
} iterator end() { return iterator (NULL); }
// pre-decrement, e.g., —--iter
list_iterator<T>& operator—-() { private:

ptr_ = ptr_->prev_; // private helper functions

return *this; void copy_list (const dslist<T>& old);
} void destroy_list();
// post-decrement, e.g., iter——
list_iterator<T> operator--(int) { //REPRESENTATION

list_iterator<T> temp (*this); Node<T>* head_;

ptr_ = ptr_->prev_; Node<T>* tail_;

return temp; unsigned int size_;

10/07/25
02:57:06

/7
// LIST CLASS IMPLEMENTATION

// Remember: Because this is a templated class, the implementation of all

// member functions (even those longer than 1 line) should be in the .h file
// Compilation of any file that #includes the header file of a templated

// class needs all the code, not just the declaration.

template <class T>
dslist<T>& dslist<T>::operator=
// check for self-assignment
if (&old != this) {
destroy_list();
copy_list (old);
}

return *this;

(const dslist<T>& old) {

template <class T> woid dslist<T>::push_back(const T& v) {
// We will implement this in Lecture 11

}
template <class T> void dslist<T>::push_front (const T& v) {
// You will implement this in Lab 6

}
template <class T> woid dslist<T>::pop_front () {
// You will implement this in Lab 6

}
template <class T> void dslist<T>::pop_back() {
// You will implement this in Lab 6

}

// operator== asks "Do these lists look the same (length & contents)?"
template <class T>
bool operator== (dslist<T>& left, dslist<T>& right) {
if (left.size() != right.size()) return false;
typename dslist<T>::iterator left_itr = left.begin();
typename dslist<T>::iterator right_itr = right.begin();
// walk over both lists, looking for a mismatched value
while (left_itr != left.end()) {
if (*left_itr != *right_itr) return false;
left_itr++; right_itr++;
}
return true;
}
template <class T>

bool operator!= (dslist<T>& left, dslist<T>& right){ return ! (left==right);

}

dslist.h

template <class T>
typename dslist<T>::iterator dslist<T>::insert (iterator itr,
// We will implement this in Lecture 11

}

template <class T>

typename dslist<T>::iterator dslist<T>::erase(iterator itr)
// We will implement this in Lecture 11

}

template <class T>

void dslist<T>::copy_list (const dslist<T>& old) {
// We will implement this in Lecture 11

}
template <class T>
void dslist<T>::destroy_list () {
// You will implement this in Lab 6

}

#endif

{

const T& v)

{

