
CSCI-1200 Data Structures — Fall 2025

Lecture 17 – Associative Containers (Maps), Part 2

Review of Lecture 16

• Maps are associations between keys and values.

• Maps have fast insert, access and remove operations: O(log n), we’ll learn why in future lectures when we study
the implementation!

• Maps store pairs; map iterators refer to these pairs.

• The primary map member functions we discussed are operator[], find, insert, and erase.

• Motivating Example: “Print out a sorted list of all words in the input file with a count of how many times each
word appears.” We can solve this problem using several different approaches and different containers:

– a vector or list of strings

– a vector or list of pairs (string and int)

– a map

– ?

How do these approaches compare? Which is the most straightforward to implement? Which is the most
efficient? Which is the least likely to have bugs? Which one is the simplest to explain to a peer / colleague
who is new to C++ or new to programming?

Today’s Class — Maps, Part 2

• Maps containing more complicated values.

• Example: index mapping words to the text line numbers on which they appear.

• Maps whose keys are class objects, example: maintaining student records.

17.1 More Complicated Values map<string, vector<int> > m

15 5"hello"

first second

p

q

• Let’s look at the example. Note that the space between
the > > may be required (by many compiler parsers).
Otherwise, >> might be treated
as the stream operator.

map<string, vector<int> > m;

map<string, vector<int> >::iterator p;

• Here’s the syntax for entering the number 5
in the vector associated with the string "hello":

m[string("hello")].push_back(5);

• Here’s the syntax for accessing the size of the vector stored
in the map pair referred to by map iterator p:

p = m.find(string("hello"));

p->second.size()

Now, if you want to access (and change) the ith entry in this vector you can either using subscripting:

(p->second)[i] = 15;

(the parentheses are needed because of precedence) or you can use vector iterators:

vector<int>::iterator q = p->second.begin() + i;

*q = 15;

Both of these, of course, assume that at least i+1 integers have been stored in the vector (either through the
use of push back or through construction of the vector).

• We can figure out the correct syntax for all of these by drawing pictures to visualize the contents of the map
and the pairs stored in the map. We will do this during lecture, and you should do so all the time in practice.

17.2 Exercise

Write code to count the odd numbers stored in the map

map<string, vector<int> > m;

This will require testing all contents of each vector in the map. Try writing the code using subscripting on the vectors
and then again using vector iterators.

17.3 A Word Index in a Text File

// Given a text file, generate an alphabetical listing of the words in the file

// and the file line numbers on which each word appears. If a word appears on

// a line more than once, the line number is listed only once.

#include <iostream>

#include <map>

#include <string>

#include <vector>

// implementation omitted, will be covered in a later lecture

std::vector<std::string> breakup_line_into_strings(const std::string& line);

int main() {

std::map<std::string, std::vector<int> > words_to_lines;

std::string line;

int line_number = 0;

while (getline(std::cin, line)) {

line_number++;

// Break the string up into words

std::vector<std::string> words = breakup_line_into_strings(line);

// Find if each word is already in the map.

for (std::vector<std::string>::iterator p = words.begin(); p!= words.end(); ++p) {

// If not, create a new entry with an empty vector (default) and

// add to index to the end of the vector

std::map<std::string, std::vector<int> >::iterator map_itr = words_to_lines.find(*p);

if (map_itr == words_to_lines.end())

words_to_lines[*p].push_back(line_number); // could use insert here

// If it is, check the last entry to see if the line number is

// already there. If not, add it to the back of the vector.

else if (map_itr->second.back() != line_number)

map_itr->second.push_back(line_number);

}

}

// Output each word on a single line, followed by the line numbers.

std::map<std::string, std::vector<int> >::iterator map_itr;

for (map_itr = words_to_lines.begin(); map_itr != words_to_lines.end(); map_itr++) {

std::cout << map_itr->first << ":\t";

for (unsigned int i = 0; i < map_itr->second.size(); ++i)

std::cout << (map_itr->second)[i] << " ";

std::cout << "\n";

}

return 0;

}

2

17.4 Our Own Class as the Map Key

• So far we have used string (mostly) and int (once) as the key in building a map. Intuitively, it would seem
that string is used quite commonly.

• More generally, we can use any class we want as long as it has an operator< defined on it.

• Suppose we want to maintain data for students including name, address, courses, grades, and tuition fees and
calculate things like GPAs, credits, and remaining required courses. We could do this by making a single
Student class object that stores everything for a particular student and put that in a vector or list. Alternately,
we could break the information into separate classes and use a map. First, let’s look at a sketch of a few classes
that can work together to store the data:

class Name {

public:

Name(const string& first, const string& last) :

m_first(first), m_last(last) {}

const string& first() const { return m_first; }

const string& last() const { return m_last; }

private:

string m_first;

string m_last;

};

class CourseGrade {

public:

Course(const string &c_name, const string & grade)

: course_name(c_name), final_grade(grade) {}

const string & get_course_name() const { return course_name; }

const string & get_final_grade() const { return final_grade; }

private:

string course_name;

string final_grade;

};

class StudentRecord {

public:

const string& getAddress() const { return address; }

const string& getGradeInCourse(const string &course_name) const;

/* implementation omitted */

bool hasCompletedCourse(const string &course_name) const;

/* implementation omitted */

float getGPA() const { return GPA; }

/* additional member functions omitted */

private:

string address;

vector<CourseGrade> completed_coursework;

float GPA;

/* etc. */

};

• Now if we want to create a map of student names and associated student records, we need to add an operator<

for Name objects. This is simple:

bool operator< (const Name& left, const Name& right) {

return left.last() < right.last() ||

(left.last() == right.last() && left.first() < right.first());

}

• Now we can define a map:

map<Name, StudentRecord> students;

3

17.5 Exercises

• First let’s draw a picture of this map data structure populated with interesting data:

• So what are the advantages of organizing this data using a map in this way? Let’s assume there are s students,
c different classes offered at the school, each student takes up to k classes before graduation, and at most p
students take a particular course.

– Write a fragment of code to access student X’s grade in course Y. What is the big ’O’ notation of this
operation?

– Write a fragment of code to make a list of all students who have taken course Y. What is the big ’O’
notation of this operation?

17.6 Typedefs

• One of the painful aspects of using maps is the syntax. For example, consider a constant iterator in a map
associating strings and vectors of ints:

map < string, vector<int> > :: const_iterator p;

• Typedefs are a syntactic means of shortening this. For example, if you place the line:

typedef map < string, vector<int> > word_index;

before your main function (and any function prototypes), then anywhere you want the map you can just use
the identifier word_index:

word_index :: const_iterator p;

The compiler makes the substitution for you.

17.7 When to Use Maps, Reprise

• Maps are an association between two types, one of which (the key) must have a operator< ordering on it.

• The association may be immediate:

– Words and their counts.

– Words and the lines on which they appear

• Or, the association may be created by splitting a type:

– Splitting off the name (or student id) from rest of student record.

4

	More Complicated Values
	Exercise
	A Word Index in a Text File
	Our Own Class as the Map Key
	Exercises
	Typedefs
	When to Use Maps, Reprise

