
CSCI-1200 Data Structures — Fall 2025

Lecture 21 – Trees, Part IV

Review from Lecture 20

• Breadth First Traversal

template <class T>

void breadth_first_print(TreeNode<T>* root) {

int counter = 1;

if (root == NULL) return;

std::list< TreeNode<T>* > current; // list of all nodes on a specific level

current.push_back(root);

std::list< TreeNode<T>* > next; // list of all nodes on the next level

while (current.size() > 0) { // print everything at this level

std::cout << "level " << counter << ": ";

typename std::list<TreeNode<T>*>::iterator itr = current.begin();

while (itr != current.end()) { // and collect items for next level

TreeNode<T> *tmp = *itr;

std::cout << tmp->value << " ";

if (tmp->left != NULL) { next.push_back(tmp->left); }

if (tmp->right != NULL) { next.push_back(tmp->right); }

itr++;

}

current = next; // move on to the next level!

next.clear();

counter++;

std::cout << std::endl;

}

}

• BST / ds_set iterator increment (operator++) & decrement (operator--)

template <class T>

typename ds_set<T>::iterator& ds_set<T>::iterator::operator++() {

if (ptr_->right != NULL) { // find the leftmost child of the right node

ptr_ = ptr_->right;

while (ptr_->left != NULL) { ptr_ = ptr_->left; }

} else { // go upwards along right branches... stop after the first left

while (ptr_->parent!=NULL && ptr_->parent->right==ptr_) {ptr_=ptr_->parent;}

ptr_ = ptr_->parent;

}

return *this;

}

• Every node stores Node parent pointer or
iterator stores a vector of Node pointers (the path from root Node).

If we choose to implement the iterators using parent pointers, we will need to:

– add the parent to the Node representation

– revise insert to set parent pointers

– revise copy_tree to set parent pointers

– revise erase to update with parent pointers

• Overview discussion of erase from a BST

Today’s Lecture

• Insert with parent pointers - and the importance of pass-by-reference

• Finish implement erase from a ds_set

• Tree height & longest/shortest paths from root to leaf node / null pointer

• Limitations of our ds set implementation, brief intro to red-black trees

• BONUS TOPIC: Template Specialization

21.1 Re-Implementation of Insert with Parent Pointers

public:

std::pair< iterator, bool > insert(T const& key_value) {

return insert(key_value, root_, NULL);

}

private:

std::pair<iterator,bool> insert(const T& key_value,

TreeNode<T>*& p, TreeNode<T>* the_parent) {

if (!p) {

p = new TreeNode<T>(key_value);

p->parent = the_parent;

this->size_++;

return std::pair<iterator,bool>(iterator(p,this), true);

}

else if (key_value < p->value)

return insert(key_value, p->left, p);

else if (key_value > p->value)

return insert(key_value, p->right, p);

else

return std::pair<iterator,bool>(iterator(p,this), false);

}

21.2 Implementation of Erase

• First we need to find the node to remove.
Once it is found, the actual removal is easy if the
node has no children or only one child.
Draw picture of each case!

• It is harder if there are two children:

– Find the node with the greatest value
in the left subtree (or the node with the
smallest value in the right subtree).

– The value in this node may be safely
moved into the current node because of
the tree ordering.

– Then we recursively apply erase to
remove that node — which is guaranteed to
have at most one child.

n−r

a−f

giraffe snake

mouse

t−za−f

giraffe snake

lion

h−l

h−k

n−r t−z

template <class T>

int ds_set<T>::erase(T const& key_value, Node* &p) {

if (!p) return 0;

// look left & right

if (p->value < key_value)

return erase(key_value, p->right);

else if (p->value > key_value)

return erase(key_value, p->left);

// Found the node. Let's delete it

assert (p->value == key_value);

if (!p->left && !p->right) { // leaf

delete p;

p=NULL;

size_--;

} else if (!p->left) { // no left child

Node* q = p;

p=p->right;

assert (p->parent == q);

p->parent = q->parent;

delete q;

size_--;

} else if (!p->right) { // no right child

Node* q = p;

p=p->left;

assert (p->parent == q);

p->parent = q->parent;

delete q;

size_--;

} else { // Find rightmost node in left subtree

Node* q = p->left;

while (q->right) q = q->right;

p->value = q->value;

// recursively remove the value from the left subtree

int check = erase(q->value, p->left);

assert (check == 1);

}

return 1;

}

2

21.3 Height and Height Calculation Algorithm

• The height of a node in a tree is the length of the longest path down the tree from that node to a leaf node.
The height of a leaf is 1. We will think of the height of a null pointer as 0.

• The height of the tree is the height of the root node, and therefore if the tree is empty the height will be 0.

Exercise: Write a simple recursive algorithm to calculate the height of a tree.

• What is the best/average/worst-case running time of this algorithm? What is the best/average/worst-case
memory usage of this algorithm? Give a specific example tree that illustrates each case.

21.4 Shortest Paths to Leaf Node

• Now let’s write a function to instead calculate the shortest path to a NULL child pointer.

• What is the running time of this algorithm? Can we do better?
Hint: How does a breadth-first vs. depth-first algorithm for this problem compare?

21.5 Limitations of Our BST Implementation

• The efficiency of the main insert, find and erase algorithms depends on the height of the tree.

• The best-case and average-case heights of a binary search tree storing n nodes are both O(log n). The worst-
case, which often can happen in practice, is O(n).

• Developing more sophisticated algorithms to avoid the worst-case behavior will be covered in Introduction to
Algorithms. One elegant extension to binary search tree is described below...

3

21.6 Red-Black Trees

• Intuition: A binary tree with n = 2k − 1 nodes can be exactly balanced. We would draw this tree using only
black nodes. However, if the tree needs to store additional nodes, the height will increase in some branches of
the tree and it will become somewhat unbalanced. We will monitor and limit where and how unbalanced the
tree is by adding red nodes and occasionally rearranging & recoloring the nodes to distribute the extra data.

• In addition to the binary search tree properties, the
following red-black tree properties are maintained
throughout all modifications to the data structure:

1. Each node is either red or black.

2. The NULL child pointers are black.

3. Both children of every red node are black.
The parent of a red node must also be black.
We cannot have 2 red nodes in a row.

4. All paths from a particular node to a NULL child pointer
contain the same number of black nodes.

5. Optional requirement: The root is always black.

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL NULL

NULL

NULL

NULL

14

1 3

8

4

6

75 9

10

12

1311

2

• What tree does our ds set implementation produce if we insert the numbers 1-14 in order?
The tree above is the result using a red-black tree. Notice how the tree is still quite balanced.

• After each insert or erase we need to check the red-black properties, and perform rotations and/or recolorings
to re-establish the red-black properties. Even with these additional implementation steps, insert and erase
remain O(log n)! We won’t cover the implementation, proof of the correctness, or full analysis in this course.

• There are lots of internet resources about Red-Black trees – videos & interactive animations demonstrate the
automatic rebalancing algorithm (with rotations & recolorings), e.g.:

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

• What is the best/average/worst case height of a red-black tree with n nodes?

• What is the best/average/worst case shortest-path from root to leaf node in a red-black tree with n nodes?

21.7 Practice Exam Question

Fill in the tree on the right with the integers 1-7
to make a binary search tree. Also, color each
node “red” or “black” so that the tree also
fulfills the requirements of a Red-Black tree.

value:

color:

value:

color:

value:

color:

value:

color:

value:

color:

value:

color:

value:

color:

Draw two other red-black binary search
trees with the values 1-7.

Note: Red-Black Trees are just one algorithm for self-balancing binary search tree.
Others include: AVL trees, Splay trees, 2-3-4 trees, (& more!).

4

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

21.8 BONUS TOPIC: Template Specialization Example

Writing templated functions is elegant and powerful, but sometimes we do not want to handle all types in exactly
the same way. Sometimes we want to write different versions of the function depending on the type:

• Let’s study and discussion the following code:

// We'll use this templated function (unless we find a specialized

// implementation for our type)

template <class T>

void print_vec (const std::vector<T> &v) {

std::cout << "count=" << v.size() << " data=";

for (unsigned int i = 0; i < v.size(); i++) {

std::cout << " " << v[i]; }

std::cout << std::endl;

}

// This will match doubles (but not floats)

void print_vec (const std::vector<double> &v) {

std::cout << "count=" << v.size() << " data=";

for (unsigned int i = 0; i < v.size(); i++) {

std::cout << std::setprecision(1) << std::fixed << " " << v[i]; }

// unset the formatting

std::cout << std::defaultfloat << std::endl;

}

int main() {

// note: this syntax for initialization of vector contents is available with C++11

std::vector<int> int_v = { 1, 2, 3, 4, 5 };

std::vector<double> double_v = { 1, 2, 3, 4, 5 };

std::vector<float> float_v = { 1, 2, 3, 4, 5 };

std::vector<std::string> string_v = { "1", "2", "3", "4", "5" };

print_vec(int_v);

print_vec(double_v);

print_vec(float_v);

print_vec(string_v);

}

// This would match strings... but because it's placed after the

// usage in main it's not used!?!?!

void print_vec (const std::vector<std::string> &v) {

std::cout << "count=" << v.size() << " data=";

for (unsigned int i = 0; i < v.size(); i++) {

std::cout << " \"" << v[i] << "\""; }

std::cout << std::endl;

}

• If we commented out the specialized implementations of print_vec for the double and string types:

count=5 data= 1 2 3 4 5

count=5 data= 1 2 3 4 5

count=5 data= 1 2 3 4 5

count=5 data= 1 2 3 4 5

• If we run the original code:

count=5 data= 1 2 3 4 5

count=5 data= 1.0 2.0 3.0 4.0 5.0

count=5 data= 1 2 3 4 5

count=5 data= 1 2 3 4 5

• If we swap the order of the main function and the string version of print_vec:

count=5 data= 1 2 3 4 5

count=5 data= 1.0 2.0 3.0 4.0 5.0

count=5 data= 1 2 3 4 5

count=5 data= "1" "2" "3" "4" "5"

5

	Re-Implementation of Insert with Parent Pointers
	Implementation of Erase
	Height and Height Calculation Algorithm
	Shortest Paths to Leaf Node
	Limitations of Our BST Implementation
	Red-Black Trees
	Practice Exam Question
	BONUS TOPIC: Template Specialization Example

