
CSCI-1200 Data Structures — Fall 2025

Lecture 22 — C++ Inheritance and Polymorphism

Test 3 Information

• Test 3 will be held Thursday, November 20th, 2025 from 6:00-7:50pm.

– Student’s assigned test room, row, and seat assignments will be re-randomized. Test 3 seating assignments
will be posted and emailed Tuesday, November 18th.

IMPORTANT! Test 3 will be in Sage 3303 and Sage 3510.

– No make-ups will be given except for pre-approved absence or emergency or illness, and a written excuse
from the Dean of Students or the Student Experience office or the RPI Health Center will be required.

– If you have a letter from Disability Services for Students and you have not already emailed it to
ds_instructors@cs.rpi.edu, please do so IMMEDIATELY. Meredith Widman will be in contact to
make arrangements for your test accommodations.

• Coverage: Lectures 1-22, Labs 1-11, HW 1-8.

– Practice problems from previous tests are available on the course website.

– Sample solutions to the practice problems will be posted on Wednesday morning.

– The best way to prepare is to completely work through and write out your solution to each problem, before
looking at the answers.

– You should practice timing yourself as well. The test will be 110 minutes and there will be 100 points.
If a problem is worth 25 points, budgeting 25 minutes for yourself to solve the problem is a good time
management technique.

– The exam will be handwritten on paper. You’re also encouraged to practice legibly handwriting your
answers to the practice problems on paper.

• OPTIONAL: Prepare a 2 page, black & white, 8.5x11”, portrait orientation .pdf of notes you would like to
have during the test. This may be digitally prepared or handwritten and scanned or photographed. The file
may be no bigger than 2MB. You will upload this file to Submitty gradeable “Test 3 Notes Page (Optional)”
before Wednesday, November 19th @11:59pm. We will print this and attach it to your test. No other notes
may be used during the test.

• Going in to the test, you should know what big topics will be covered on the test. As you skim through the
problems, see if you can match up those big topics to each question. Even if you are stumped about how to
solve the whole problem, or some of the details of the problem, make sure you demonstrate your understanding
of the big topic that is covered in that question.

• Re-read the problem statement carefully. Make sure you didn’t miss anything.

• Additional Notes:

– Please use the restroom before entering the exam room. Except for emergencies, students must remain in
their seats until they are ready to turn in their exam. You may leave early if you finish the exam early.

– Bring your Rensselaer photo ID card. We will be checking IDs when you turn in your exam.

– Bring your own pencil(s) & eraser (pens are ok, but not recommended). The test will involve handwriting
code on paper (and other short answer problem solving). Neat, legible handwriting is appreciated. We
will be somewhat forgiving to minor syntax errors – it will be graded by humans not computers :)

– Do not bring your own scratch paper. The exam packet will include sufficient scratch paper.

– Computers, cell-phones, smart watches, calculators, music players, headphones, etc. are not permitted.
Please do not bring your laptop, books, backpack, etc. to the test room – leave everything in your dorm
room. Unless you are coming directly from another class or sports/club meeting.

Review from Lectures 20 & 21 and Lab 11

• Breadth-first tree traversal

• operator++ for tree iterator for in-order traversal

• ds_set insert & erase implementation

• More practice exercises with trees & Big O Notation

• Limitations of our ds set implementation

• Brief intro to red-black trees, a method for maintaining a balanced tree!

Today’s Class

• Inheritance is a relationship among classes. Examples: bank accounts, polygons, stack & list

• Basic mechanisms of inheritance

• Types of inheritance

• Is-A, Has-A, As-A relationships among classes.

• Polymorphism

22.1 Motivating Example: Bank Accounts

• Consider different types of bank accounts:

– Savings accounts

– Checking accounts

– Time withdrawal accounts (like savings accounts, except that only the interest can be withdrawn)

• If you were designing C++ classes to represent each of these, what member functions might be repeated among
the different classes? What member functions would be unique to a given class?

• To avoid repeating common member functions and member variables, we will create a class hierarchy, where
the common members are placed in a base class and specialized members are placed in derived classes.

22.2 Accounts Hierarchy

• Account is the base class of the hierarchy.

• SavingsAccount is a derived class from Account. SavingsAccount has inherited member variables & functions
and ordinarily-defined member variables & functions.

• The member variable balance in base class Account is protected, which means:

– balance is NOT publicly accessible outside the class, but it is accessible in the derived classes.

– if balance was declared as private, then SavingsAccount member functions could not access it.

• When using objects of type SavingsAccount, the inherited and derived members are treated exactly the same
and are not distinguishable.

• CheckingAccount is also a derived class from base class Account.

• TimeAccount is derived from SavingsAccount. SavingsAccount is its base class and Account is its indirect
base class.

2

22.3 Exercise: Draw the Accounts Class Hierarchy

#include <iostream>

// Note we've inlined all the functions (even though some are > 1 line of code)

class Account {

public:

Account(double bal = 0.0) : balance(bal) {}

void deposit(double amt) { balance += amt; }

double get_balance() const { return balance; }

protected:

double balance; // account balance

};

class SavingsAccount : public Account {

public:

SavingsAccount(double bal = 0.0, double pct = 5.0)

: Account(bal), rate(pct/100.0) {}

double compound() { // computes and deposits interest

double interest = balance * rate;

balance += interest;

return interest;

}

double withdraw(double amt) { // if overdraft ==> return 0, else return amount

if (amt > balance) {

return 0.0;

} else {

balance -= amt;

return amt;

}

}

protected:

double rate; // periodic interest rate

};

class CheckingAccount : public Account {

public:

CheckingAccount(double bal = 0.0, double lim = 500.0, double chg = 0.5)

: Account(bal), limit(lim), charge(chg) {}

double cash_check(double amt) {

assert (amt > 0);

if (balance < limit && (amt + charge <= balance)) {

balance -= amt + charge;

return amt + charge;

} else if (balance >= limit && amt <= balance) {

balance -= amt;

return amt;

} else {

return 0.0;

}

}

protected:

double limit; // lower limit for free checking

double charge; // per check charge

};

class TimeAccount : public SavingsAccount {

public:

TimeAccount(double bal = 0.0, double pct = 5.0)

: SavingsAccount(bal, pct), funds_avail(0.0) {}

// redefines 2 member functions from SavingsAccount

double compound() {

double interest = SavingsAccount::compound();

funds_avail += interest;

return interest;

}

3

double withdraw(double amt) {

if (amt <= funds_avail) {

funds_avail -= amt;

balance -= amt;

return amt;

} else {

return 0.0;

}

}

double get_avail() const { return funds_avail; };

protected:

double funds_avail; // amount available for withdrawal

};

22.4 Constructors and Destructors

• Constructors of a derived class call the base class constructor immediately, before doing ANYTHING else.
The only thing you can control is which constructor is called and what the arguments will be. Thus when
a TimeAccount is created 3 constructors are called: the Account constructor, then the SavingsAccount

constructor, and then finally the TimeAccount constructor.

• The reverse is true for destructors: derived class constructors do their jobs first and then base class destructors
are called at the, automatically. Note: destructors for classes which have derived classes must be marked virtual
for this chain of calls to happen.

22.5 Overriding Member Functions in Derived Classes

• A derived class can redefine member functions in the base class. The function prototype must be identical, not
even the use of const can be different (otherwise both functions will be accessible).

• For example, see TimeAccount::compound and TimeAccount::withdraw.

• Once a function is redefined it is not possible to call the base class function, unless it is explicitly called as in
SavingsAccount::compound.

22.6 Public, Private and Protected Inheritance

• Notice the line class Savings_Account : public Account {

This specifies that the member functions and variables from Account do not change their public, protected or
private status in SavingsAccount. This is called public inheritance.

• protected and private inheritance are other options:

– With protected inheritance, public members becomes protected and other members are unchanged

– With private inheritance, all members become private.

22.7 Stack Inheriting from List

• Some applications benefit from a data structure that has a reduced/restricted set of operations.

• A stack is a sequential data structure that only allows insert/push at the end/back of the sequence, and
remove/pop at the end/back of the sequence. We cannot access the data at the front or in the middle – even
just simply to read the data.

• For another example of inheritance, let’s implement the stack class as a derived class of std::list:
template <class T>

class stack : private std::list<T> {

public:

stack() {}

stack(stack<T> const& other) : std::list<T>(other) {}

virtual ~stack() {}

void push(T const& value) { this->push_back(value); }

void pop() { this->pop_back(); }

T const& top() const { return this->back(); }

int size() { return std::list<T>::size(); }

bool empty() { return std::list<T>::empty(); }

};

4

• Private inheritance hides the std::list<T> member functions from the outside world. However, these member
functions are still available to the member functions of the stack<T> class.

• Note: no member variables are defined — the only member variables needed are in the list class.

• When the stack member function uses the same name as the base class (list) member function, the name of
the base class followed by :: must be provided to indicate that the base class member function is to be used.

• The copy constructor just uses the copy constructor of the base class, without any special designation because
the stack object is a list object as well.

22.8 Is-A, Has-A, As-A Relationships Among Classes

• When trying to determine the relationship between (hypothetical) classes C1 and C2, try to think of a logical
relationship between them that can be written:

– C1 is a C2,

– C1 has a C2, or

– C1 is implemented as a C2

• If writing “C1 is-a C2” is best, for example: “a savings account is an account”, then C1 should be a derived
class (a subclass) of C2.

• If writing “C1 has-a C2” is best, for example: “a cylinder has a circle as its base”, then class C1 should have
a member variable of type C2.

• In the case of “C1 is implemented as-a C2”, for example: “the stack is implemented as a list”, then C1 should
be derived from C2, but with private inheritance. This is by far the least common case!

22.9 Exercise: 2D Geometric Primitives

Create a class hierarchy of geometric objects, such as: triangle, isosceles triangle, right triangle, isosceles right
triangle, quadrilateral, square, rhombus, kite, trapezoid, parallelogram, rectangle, circle, ellipse, hexagon, polygon,
etc. How should this hierarchy be arranged? What member variables and member functions should be in each class?

22.10 Note: Multiple Inheritance

• When sketching a class hierarchy for geometric objects, you may have wanted to specify relationships that were
more complex... in particular some objects may wish to inherit from more than one base class.

• This is calledmultiple inheritance and can make many implementation details significantly more hairy. Different
programming languages offer different variations of multiple inheritance.

Instead, we inherit virtually, which
requires separate construction of the
parts of the diagram marked virtual.

This ensures we have a single
unambiguous copy of the member
variable data for A & B.

D

B

A

C

E

B

A

F

G

D

B

A

C

E

virtualvirtual

F

A

B

C

B

A
C

E

D

F

B

AD

G

Normally, inheritance just
adds layers, like an onion
or a nesting doll.

duplicate copies of the member variables for
classes A & B.

an instance of class Gan instance of class Fan instance of class Fan instance of class C

Note that even if a class

inheritance, it may still
have virtual inheritance
on its path and require
separate construction.

With multiple inheritance, this could lead to

In each layer, we store
the member variables
for that class.

does not itself use multiple

A

C

B

5

22.11 Introduction to Polymorphism

• Let’s consider a small class hierarchy version of polygonal objects:

class Polygon {

public:

Polygon() {}

virtual ~Polygon() {}

int NumVerts() { return verts.size(); }

virtual double Area() = 0;

virtual bool IsSquare() { return false; }

protected:

vector<Point> verts;

};

class Triangle : public Polygon {

public:

Triangle(Point pts[3]) {

for (int i = 0; i < 3; i++) verts.push_back(pts[i]); }

double Area();

};

class Quadrilateral : public Polygon {

public:

Quadrilateral(Point pts[4]) {

for (int i = 0; i < 4; i++) verts.push_back(pts[i]); }

double Area();

double LongerDiagonal();

bool IsSquare() { return (SidesEqual() && AnglesEqual()); }

private:

bool SidesEqual();

bool AnglesEqual();

};

• Functions that are common, at least have a common interface, are in Polygon.

• Some of these functions are marked virtual, which means that when they are redefined by a derived class,
this new definition will be used, even for pointers to base class objects.

• Some of these virtual functions, those whose declarations are followed by = 0 are pure virtual, which means
they must be redefined in a derived class.

– Any class that has pure virtual functions is called “abstract”.

– Objects of abstract types may not be created — only pointers to these objects may be created.

• Functions that are specific to a particular object type are declared in the derived class prototype.

22.12 A Polymorphic List of Polygon Objects

• Now instead of two separate lists of polygon objects, we can create one “polymorphic” list:

std::list<Polygon*> polygons;

• Objects are constructed using new and inserted into the list:

Polygon *p_ptr = new Triangle(....);

polygons.push_back(p_ptr);

p_ptr = new Quadrilateral(...);

polygons.push_back(p_ptr);

Triangle *t_ptr = new Triangle(....);

polygons.push_back(t_ptr);

Note: We’ve used the same pointer variable (p ptr) to point to objects of two different types.

6

22.13 Accessing Objects Through a Polymorphic List of Pointers

• Let’s sum the areas of all the polygons:

double area = 0;

for (std::list<Polygon*>::iterator i = polygons.begin(); i!=polygons.end(); ++i)

area += (*i)->Area();

Which Area function is called? If *i points to a Triangle object then the function defined in the Triangle

class would be called. If *i points to a Quadrilateral object then Quadrilateral::Area will be called.

• Here’s code to count the number of squares in the list:

int count = 0;

for (std::list<Polygon*>::iterator i = polygons.begin(); i!=polygons.end(); ++i)

count += (*i)->IsSquare();

If Polygon::IsSquare had not been declared virtual then the function defined in Polygon would always be
called! In general, given a pointer to type T we start at T and look “up” the hierarchy for the closest function
definition (this can be done at compile time). If that function has been declared virtual, we will start this
search instead at the actual type of the object (this requires additional work at runtime) in case it has been
redefined in a derived class of type T.

• To use a function in Quadrilateral that is not declared in Polygon, you must “cast” the pointer. The pointer
*q will be NULL if *i is not a Quadrilateral object.

for (std::list<Polygon*>::iterator i = polygons.begin(); i!=polygons.end(); ++i) {

Quadrilateral *q = dynamic_cast<Quadrilateral*> (*i);

if (q) std::cout << "diagonal: " << q->LongerDiagonal() << std::endl;

}

22.14 Exercise

What is the output of the following program?

class Base {

public:

Base() {}

virtual void A() { std::cout << "Base A "; }

void B() { std::cout << "Base B "; }

};

class One : public Base {

public:

One() {}

void A() { std::cout << "One A "; }

void B() { std::cout << "One B "; }

};

class Two : public Base {

public:

Two() {}

void A() { std::cout << "Two A "; }

void B() { std::cout << "Two B "; }

};

int main() {

Base* a[3];

a[0] = new Base;

a[1] = new One;

a[2] = new Two;

for (unsigned int i=0; i<3; ++i) {

a[i]->A();

a[i]->B();

}

std::cout << std::endl;

return 0;

}

7

	Motivating Example: Bank Accounts
	Accounts Hierarchy
	Exercise: Draw the Accounts Class Hierarchy
	Constructors and Destructors
	Overriding Member Functions in Derived Classes
	Public, Private and Protected Inheritance
	Stack Inheriting from List
	Is-A, Has-A, As-A Relationships Among Classes
	Exercise: 2D Geometric Primitives
	Note: Multiple Inheritance
	Introduction to Polymorphism
	A Polymorphic List of Polygon Objects
	Accessing Objects Through a Polymorphic List of Pointers
	Exercise

