
CSCI-1200 Data Structures — Fall 2025

Lecture 24 – Hash Tables, Part 2

Review from Lecture 23 & Lab 12

• “the single most important data structure known to mankind”

• Hash Tables, Hash Functions, and Collision Resolution

• Performance of: Hash Tables vs. Binary Search Trees

• Collision resolution: separate chaining

• Using a hash table to implement a set/map

– Iterators, find, insert, and erase

Today’s Lecture

• Using STL’s for_each

• Something weird & cool in C++... Function Objects, a.k.a. Functors

• Hash Tables, part II

– STL’s unordered_set (and unordered_map)

– Hash functions as functors/function objects (or non-type template parameters, or function pointers)

– Collision resolution: separate chaining vs. open addressing

24.1 Using STL’s for each

• First, here’s a tiny helper function:

void float_print (float f) {

std::cout << f << std::endl;

}

• Let’s make an STL vector of floats:

std::vector<float> my_data;

my_data.push_back(3.14);

my_data.push_back(1.41);

my_data.push_back(6.02);

my_data.push_back(2.71);

• Now we can write a loop to print out all the data in our vector:

std::vector<float>::iterator itr;

for (itr = my_data.begin(); itr != my_data.end(); itr++) {

float_print(*itr);

}

• Alternatively we can use it with STL’s for_each function to visit and print each element:

std::for_each(my_data.begin(), my_data.end(), float_print);

Wow! That’s alot less to type. Can I stop using regular for and while loops altogether?

• We can actually also do the same thing without creating & explicitly naming the float_print function (which
is messy software clutter). We create an anonymous function using lambda:

std::for_each(my_data.begin(), my_data.end(), [](float f){ std::cout << f << std::end; });

Lambda is rather new to the C++ language (part of C++11). But lambda is a core piece of many classic,
older programming languages including Lisp and Scheme. Python lambdas and Perl anonymous subroutines
are similar. (In fact lambda dates back to the 1930’s, before the first computers were built!) You’ll learn more
about lambda more in later courses like CSCI 4430 Programming Languages!



24.2 Function Objects, a.k.a. Functors

• In addition to the basic mathematical operators + - * / < > , another operator we can overload for our C++
classes is the function call operator.

Why do we want to do this? This allows instances or objects of our class, to be used like functions. It’s weird
but powerful.

• Here’s the basic syntax. Any specific number of arguments can be used.

class my_class_name {

public:

// ... normal class stuff ...

my_return_type operator() ( /* my list of args */ );

};

24.3 Why are Functors Useful?

• One example is the default 3rd argument for std::sort. We know that by default STL’s sort routines will use
the less than comparison function for the type stored inside the container. How exactly do they do that?

• First let’s define another tiny helper function:

bool float_less(float x, float y) {

return x < y;

}

• Remember how we can sort the my_data vector defined above using our own homemade comparison function
for sorting:

std::sort(my_data.begin(), my_data.end(), float_less);

If we don’t specify a 3rd argument:

std::sort(my_data.begin(), my_data.end());

This is what STL does by default:

std::sort(my_data.begin(), my_data.end(), std::less<float>());

• What is std::less? It’s a templated class. Above we have called the default constructor to make an instance
of that class. Then, that instance/object can be used like it’s a function. Weird!

• How does it do that? std::less is a teeny tiny class that just contains the overloaded function call operator.

template <class T>

class less {

public:

bool operator() (const T& x, const T& y) const { return x < y; }

};

You can use this instance/object/functor as a function that expects exactly two arguments of type T (in this
example float) that returns a bool. That’s exactly what we need for std::sort! This ultimately does the
same thing as our tiny helper homemade compare function (but for any type T)!

24.4 Another More Complicated Functor Example

• Constructors of function objects can be used to specify internal data for the functor that can then be used
during computation of the function call operator! For example:

class between_values {

private:

float low, high;

public:

between_values(float l, float h) : low(l), high(h) {}

bool operator() (float val) { return low <= val && val <= high; }

};
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• The range between low & high is specified when a functor/an instance of this class is created. We might
have multiple different instances of the between_values functor, each with their own range. Later, when the
functor is used, the query value will be passed in as an argument. The function call operator accepts that
single argument val and compares against the internal data low & high.

• STL has a find function that can be used for vectors to find a specific value (it simply loops over the structure
using an iterator in O(n) time).

std::vector<int>::iterator itr;

itr = std::find(my_data.begin(), my_data.end(), 3);

if (itr != my_data.end()) {

std::cout << "Yes, the value 3 is in this container." << endl;

}

• STL also has a find_if construct that we can use with our between_values functor. For example:

between_values two_and_four(2,4);

if (std::find_if(my_data.begin(), my_data.end(), two_and_four)

!= my_data.end()) {

std::cout << "Found a value between 2 and 4!" << std::endl;

}

• Alternatively, we could create the functor without giving it a variable name. And in the use below we also
capture the return value to print out the first item in the vector inside this range. Note that it does not print
all values in the range.

std::vector<float>::iterator itr;

itr = std::find_if(my_data.begin(), my_data.end(), between_values(2,4));

if (itr != my_data.end()) {

std::cout << "my_data contains " << *itr

<< ", a value between 2 & 4!" << std::endl;

}

“Weird Things we can do in C++” Finished – Now back to Hash Tables!

24.5 Hash Table in STL?

• The Standard Template Library standard and implementation of hash table have been slowly evolving over
many years. Unfortunately, the names “hashset” and “hashmap” were spoiled by developers anticipating the
STL standard, so to avoid breaking or having name clashes with code using these early implementations...

• STL’s agreed-upon standard for hash tables: unordered set and unordered map

• Depending on your OS/compiler, you may need to add the -std=c++11 flag to the compile line (or other
configuration tweaks) to access these more recent pieces of STL. (And this will certainly continue to evolve in
future years!)

• For many types STL has a good default hash function, so in those cases you do not need to provide your own
hash function. But sometimes we do want to write our own...

24.6 Writing our own Hash Functions or Hash Functors

• Often the programmer/designer for the program using a hash function has the best understanding of the
distribution of data to be stored in the hash function. Thus, they are in the best position to define an efficient
custom hash function (if needed) for the data & application.

• But often, we can just use a general-purpose, works-for-most-everything hash function. Hashing strings is really
common, so there are many publicly-available, very good, string hash functions. For example:
Note: This implementation comes from http://www.partow.net/programming/hashfunctions/

unsigned int MyHashFunction(std::string const& key) {

unsigned int hash = 1315423911;

for(unsigned int i = 0; i < key.length(); i++)

hash ^= ((hash << 5) + key[i] + (hash >> 2));

return hash;

}
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• Alternately, this same string hash code can be written as a functor – which is just a class wrapper around a
function, and the function is implemented as the overloaded function call operator for the class.

class MyHashFunctor {

public:

unsigned int operator() (std::string const& key) const {

unsigned int hash = 1315423911;

for(unsigned int i = 0; i < key.length(); i++)

hash ^= ((hash << 5) + key[i] + (hash >> 2));

return hash;

}

};

• Once our new type containing the hash function is defined, we can create instances of our hash set object
containing std::string by specifying the type MyHashFunctor as the second template parameter to the
declaration of a ds_hashset. E.g.,

ds_hashset<std::string, MyHashFunctor> my_hashset;

• NOTE: These hash functions run in linear time for the length of the string. If we are hashing short English words
we can treat this as a constant. But for applications with lengthy string data (e.g., human genome sequence
data), this hash function may no longer meet the constant time requirement! (Instead, the programmer may
need to write their own hash function!)

24.7 Using STL’s Associative Hash Table (Unordered Map)

• Using the default std::string hash function.

– With no specified initial table size.

std::unordered_map<std::string,Foo> m;

– Optionally specifying initial (minimum) table size.

std::unordered_map<std::string,Foo> m(1000);

• Using a home-made std::string hash function. Note: We are required to specify the initial table size.

– Manually specifying the hash function type.

std::unordered_map<std::string,Foo,std::function<unsigned int(std::string)> >

m(1000, MyHashFunction);

– Using the decltype specifier to get the “declared type of an entity”.

std::unordered_map<std::string,Foo,decltype(&MyHashFunction)>

m(1000, MyHashFunction);

• Using a home-made std::string hash functor or function object.

– With no specified initial table size.

std::unordered_map<std::string,Foo,MyHashFunctor> m;

– Optionally specifying initial (minimum) table size.

std::unordered_map<std::string,Foo,MyHashFunctor> m(1000);

• Note: In the above examples we’re creating an association between two types (STL strings and custom Foo

object). If you’d like to just create a set (no associated 2nd type), simply switch from unordered_map to
unordered_set and remove the Foo from the template type in the examples above.

24.8 How do we Resolve Collisions? METHOD 1: Separate Chaining

NOTE: We used this method in the last lecture & in lab!

• Each table location stores a linked list of keys (and values) hashed to that location. Thus, the hashing function
really just selects which list to search or modify.

• This works well when the number of items stored in each list is small, e.g., an average of 1. Other data
structures, such as binary search trees, may be used in place of the list, but these have even greater overhead
considering the (hopefully, very small) number of items stored per bin.
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24.9 How do we Resolve Collisions? METHOD 2: Open Addressing

• Let’s eliminate the individual memory allocations and pointer indirection / dereferencing that are necessary
for separate chaining. This will improve memory / data access performance.

• We will directly store the data (key/key-value pair) in the the top level vector, and store at most one item per
index/location.

• When the chosen table index/location already stores a key (or key-value pair), we will seek a different table
location to store the new value (or pair).

• Here are three different open addressing variations to handle a collision during an insert operation:

– Linear probing: If i is the chosen hash location then the following sequence of table locations is tested
(“probed”) until an empty location is found:

(i+1)%N, (i+2)%N, (i+3)%N, ...

– Quadratic probing: If i is the hash location then the following sequence of table locations is tested:

(i+1)%N, (i+2*2)%N, (i+3*3)%N, (i+4*4)%N, ...

More generally, the jth “probe” of the table is (i+ c1j+ c2j
2) mod N where c1 and c2 are constants.

– Secondary hashing : When a collision occurs a second hash function is applied to compute a new table
location. If that location is also full, we go to a third hash function, etc. This is repeated until an empty
location is found.

We can generate a sequence/family of hash functions by swapping in a fixed random-like sequence of
constant values (e.g., big primes) into the same general function structure.

• For each of these approaches, the find operation follows the same sequence of locations as the insert operation.
The key value is determined to be absent from the table only when an empty location is found.

• When using open addressing to resolve collisions, the erase function must mark a location as “formerly
occupied”. If a location is instead marked empty (“never occupied”), find may fail to return elements that are
actually in the table.

Formerly-occupied locations may (and should) be reused, but only after the find search operation has been run
to completion (either finding the element or encountering a “never occupied” location) to determine the item
is definitely not in the table.

• When using open addressing it is critical to monitor how full the table is – specifically the counts of “currently
occupied”, “formerly occupied”, and “never occupied” locations.

– Hash table performance degrades when the sum of counts of currently and formerly occupied cells is high
(e.g., greater than 80%).

– These operations will fail completely if the table is full (no “never occupied” locations remain).

– For performance critical applications, it is helpful to run benchmark tests with real-world data (number
of insert/find/erase operations, typical values, specific hash function, actual hardware, etc.) to determine
the optimal table size and capacity threshhold to balance memory usage and running time.

Determine when to resize the table – increase (or decrease) the table size to better fit the number of values
currently held in the table. Or only groom the data – recreate the table at the current size, and re-insert
all values so all formerly occupied labels can be cleared.

A maximum allowed hash table load factor as low as 50% or 60% might be appropriate for some
applications.

24.10 Collision Resolution: Separate Chaining vs. Open Addressing – Discussion

• Advantages of open addressing over separate chaining:

– No linked lists! No pointers! It’s faster! (Indirect memory accesses are slow!)

• Problems with open addressing:

– Memory cache performance can be poor when we are jumping around unpredictably in the top level array.

– Cost of computing new hash values (linear < quadratic < secondary hashing).

– Capacity and performance must be closely monitored. Expensive re-sizing and grooming may be necessary.

– Careful testing and parameter tuning is necessary to achieve optimal memory/speed performance.
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