CSCI-1200 Data Structures
Test 2 — Practice Problems

Note: This packet contains selected practice problems from Test 2 from three previous years.
Your test will contain approzimately one third to one half as many problems (totalling ~100 pts).

1 The Combo (list + vector) Data Structure | 26 pts |

After working with the STL list data structure, Ben Bitdiddle misses the subscript operator, [], and
decides to build a hybrid Combo data structure combining the features he likes from both STL 1list and
STL vector. He sketched the following diagram showing a sequence of five STL strings:

Combo<std::string> Node<std::string> Node<std::string> Node<std::string> Node<std::string> Node<std::string>
S — N N N N

head : — value_: "zero" value_: "one" value _: "two" value_: "three" value_: "four"

tail_: next_: > next_: > next_: > next_: > next_:

size : 5 prev_: NULL | prev_: ! D prev_: ' D prev_: ' D prev_: '

I\ I\ L U

alloc_: 8

indices_:
- -

1.1 Member Variables of Combo Data Structure | 4 pts |

First, complete the data structure representation / member variable section for the Node and Combo classes
as they would appear in the class declaration:
template <class T> class Node {

public:
/* NOTE: CONSTRUCTORS OMITTED */

sample solution: 3 lines of code

};
template <class T> class Combo {
public:
/* NOTE: CONSTRUCTORS, ACCESSORS, MODIFIERS, ETC. OMITTED */
private:
sample solution: 5 lines of code
}

1.2 Write operator[] for Combo Data Structure | 3 pts |

Next implement the subscript operator [] member function for the Combo class as it would appear when

implemented inside the Combo class declaration.

sample solution: 1 lines of code

1.3 Copy Constructor for Combo Data Structure [15 pts |

Now let’s implement the copy constructor for the Combo data structure. Since this function is more than
1 line of code, we will implement it outside of the class declaration. NOTE: Don’t write or use any helper

functions in your implementation.

sample solution: 21 lines of code

1.4 Disadvantages of Combo Data Structure [4 pts |

Unfortunately the Combo Data Structure is flawed. Write 2-3 sentences describing one specific disadvantage
of this structure compared to STL vector and one specific disadvantage when compared to STL list.

2 Nested List Sentence [25 pts]

In this problem you will work with a sentence that is represented by an STL 1ist of words, where each
word is a 1ist of char. There are no spaces or punctuation in the words or sentence data structure.

2.1 Write print_sentence | 7 pts |

First, write a function named print_sentence that takes in a single argument, input, with type described
above, and legibly prints the contents of the argument to std: :cout.

NOTE: Sample output of the print_sentence function is shown below.

sample solution: 11 lines of code

2.2 Write a silly sentence editor [12 pts]

On the next page, we’ll write a function named silly that takes in the same sentence representation and
searches for two (or more) repeated adjacent letters within each word and reduces the repeated adjacent
letters to a single instance of that letter. If the word has no repeated adjacent letters it is removed from
the sentence. For example, the input sentence:

a velvet tress llama did hiss at the aardvark bookkeepers balloon trees crosssection

Will be changed to:

tres lama his ardvark bokepers balon tres crosection

3

sample solution: 24 lines of code

2.3 Big O Notation [6 pts |

Let’s say the input sentence has n words, the longest word has k letters, at most a letters are removed from
each word, and r words are removed from the sentence because they have no repeated adjacent letters.

What is the Big O Notation of print_sentence? What is the Big O Notation of silly?

If we search and replace STL list with STL vector in your solution above, will your code still work?
What is the Big O Notation of the vector version of silly? Write 1-2 sentences justifying your answer.

3 Recursive Reach [18 pts]

Let’s write a recursive function named recursive_reach that takes in 4 arguments: board, row, col, and
pathlength. The board is an STL vector of STL strings that represents a rectangular grid. Some of the
locations are marked with the '# symbol, which are “walls” that cannot be crossed. All other positions in
the grid are the ’.’ character. The function will paint locations that are reachable from the starting point
(row,col) with a path of length less than or equal to pathlength. The function paints/edits the board
with the ’o’ symbol at each location that is reachable. The path length is measured by moving up, down,
left, and right. Moving diagonally require 2 moves: horizontal and vertical.

Consider the input board shown below left. We show the output of the program for the same starting
location (row=2, col=1) for a variety of different values of pathlength.

input pathlength=1 pathlength=2 pathlength=4 pathlength=6
I R S OB ... ooo#..... ooo#00. ..
HL L. LOLHL L. ooo#..... ooo#o. ... 0o0o0#000. .
......... 000...... 0000..... 000000. . . 00000000.
CHHHSHR . L. CHEHEH . OHf##H#H . . . OH##H#H . . . o#ft#t##t#o. .
........................... 00....... 0000.....

3.1 Playing with Examples [6 pts]

For an input board of width w and height h where n grid locations are blocked by a wall, what is the worst
case longest path length that will be necessary to reach every grid location? (Assuming every location is
reachable and not completely blocked by the walls.) Draw a sketch of a worst case input board and neatly
label the start location and the longest path. What is the Big O Notation for the path length in terms of
w, h, and n? Optionally write 1-2 sentences justifying your answer.

What is the Big O Notation of your code (on the next page)? Write 1-2 sentences justifying your answer.

3.2 Painting Recursively [12 pts]

Implement recursive_reach.

sample solution: 11 lines of code

4 Jenga Block Merge [28 pts |

Let’s implement a block merge operation for our Jenga Game Simulation from Homework 5. Below is a
diagram of the Jenga data structure showing a tower with four blocks. The merge operation will allow us
to “glue together” two blocks in the tower that are on the same row and touching. For example, we could
merge blocks b and c¢ in row 1. After the merge the tower would have the same shape, but would only
contain three blocks. Block b would now be four units in width, and block ¢ would not exist anymore.

Block / Unit Unit

letter: °d’ block: block:

row: 2 which_unit: 0 which_unit: 1
width: 2 column: 1 column: 2
units: up: NULL up: NULL
down: down:
Jenga
grid_width: 4 Block / Unit Unit Block / Unit Unit \<
top: letter: b’ block: block: letter: ’c’ block: block:
row: 1 which_unit: 0 which_unit: 1 row: 1 which_unit: 0 which_unit: 1
width: 2 column: 0 column: 1 width: 2 column: 2 column: 3
units: up: NULL up: units: up: up: NULL
down: NULL down: down: down: NULL
*
[
Block ,/ Unit Unit | [/
letter: ’a’ block: block:
row: 0 which_unit: 0 which_unit: 1
width: 2 column: 1 column: 2
units: > | up: up:
down: NULL down: NULL ‘
NULL \ NULL

Here are the member variables for each class:
NOTE: A couple unnecessary variables from the Jenga class have been omitted.

Unit Block Jenga
Unit* up; int width; int grid_width;
Unit* down; Unit* units; Unit** top;
Block* block; int row; Unit** ground;
int which_unit; char letter;

int column;

4.1 Write Jenga::MergeBlocks [28 pts |

On the next page, write the Jenga class MergeBlocks member function that takes 2 Block pointers and
returns true if the blocks were successfully merged. Your function should return false if the blocks are on
different rows, or if the blocks are not touching. Also, the second block should be positioned to the right
of the first block. For this problem, you can assume all member variables are public (you don’t need to
use getter / accessor functions).

sample solution: 46 lines of code

5 Mock Interview Practice [28 pts]

Ben Bitdiddle is prepping for a coding interview and asks his Data Structures mentor Jenay for help. Please
read through the entire question before working on any of the subproblems. Jenay suggests Ben tackle this
problem from lecture: “Write code to remove duplicates from a sequence of words.”

Ben writes a function remove_dups_1 that takes in an STL vector of STL strings and returns the number
of words that were removed. For this input:
the quick brown fox jumped over the lazy brown dogs and also jumped over the lazy penguin

Calling Ben’s first draft function returns ’6’ and the vector now contains:
also and brown dogs fox jumped lazy over penguin quick the

Jenay observes that while sorting the data makes the program run fast, unfortunately the likely intention
was to preserve the order within the original data.

5.1 Quick but Flawed [14 pts]

Write code that matches the description of Ben’s remove_dups_1 function:

sample solution: 19 lines of code

If the input has n words and r words are removed, what is the Big O Notation of remove_dups_17

5.2 Preserving the Sequence [14 pts |

For his second draft, remove_dups_2, Ben starts over from scratch. The function has the same prototype,
but based on Jenay’s feedback it now preserves the original order of the data. So for this input:

the quick brown fox jumped over the lazy brown dogs and also jumped over the lazy penguin

9

The function returns 6 and the vector now contains:

the quick brown fox jumped over lazy dogs and also penguin

Jenay’s feedback about remove_dups_2 is that he’s using the erase function, which will negatively impact
the performance of this code. Write code that matches the description of Ben’s remove_dups_2 function:

sample solution: 16 lines of code

If the input has n words and r words are removed, what is the Big O Notation of remove_dups_27

Ben copies his code for remove_dups_2 to a new function. The only difference for remove_dups_3 is that
he search-and-replaces 'vector’ with another STL container. The program produces the same answer but
now runs faster. What’s the replacement container? What is the Big O Notation for remove_dups_37

10

6 Clown Car Data Structures [25 pts |

Write a function named clowncar that takes in two arguments, one of type Vec named a and the other of
type dslist named b. In lecture and lab we talked about the implementations of these two “homemade”
versions of our favorite STL containers. The function should swap the data stored in these two structures
so that after the call a contains the sequence of values that was in b and b contains the data that was in a.

The clowncar function has been appropriately added as a friend function of both Vec and dslist so that
it can directly access the private member variables of both classes. Your implementation of clowncar
SHOULD NOT call any other functions (including member functions of Vec or dslist) and it
SHOULD NOT use iterators. We want to see you directly edit the member variables and work with
the dynamic memory. As a reminder, here are the private member variables of the relevant classes:

Vec Node dslist

T* m_data; T value_; Node<T>* head_;
size_type m_size; Node<T>* next_; Node<T>* tail_;
size_type m_alloc; Node<T>* prev_; unsigned int size_;

6.1 Drawing [9 pts |

First, make a detailed memory diagram of sample input to the function: a stores 2 even integers (6 & 8)
and b stores 3 odd integers (15, 17, & 19). Next, neatly edit this diagram to show what will happen when
you call clowncar. Instead of erasing, lightly cross out things that are changed (allowing us to legibly
grade the diagram both before & after the call). Your diagram should match the code you write on the
next page. Be sure to include any temporary variables, and all allocations and deallocations of memory.

11

6.2 Implementation [16 pts |

Now implement the clowncar function. Ensure your function does not have any memory errors or leaks.

sample solution: 29 lines of code

12

7 “Missing” dslist Iterator Operators [14 pts]

Louis B. Reasoner is working on a group project and his teammates are upset that the project code below
doesn’t compile. They claim something must be wrong with dslist!

dslist<std::string>::iterator itr = sentence.begin() + 1;
dslist<std::string>::iterator itr2 = itr + 4;
assert (!(itr2 < itr));
while (itr < itr2) {
std::cout << *itr << " ";
++itr;
}
std::cout << std::endl;

Louis tries to explain that dslist is fine. That this code wouldn’t work even if they switched to the STL
list class. He suggests they modify the lines that do not compile to use these functions:

list_iterator<T>& operator++() { ptr_ = ptr_->next_; return *this; 1}
bool operator!=(const list_iterator<T>& r) const { return ptr_ != r.ptr_; }

Unfortunately, Louis is unable to convince his teammates to change the project code, and with the deadline
fast approaching Louis instead modifies the dslist implementation to make the project code above work.
What two operator member functions does Louis add to the list_iterator class? Write these two
functions as they would appear in the class declaration. Note: You may break the course rule discouraging
multiple line functions inside the class declaration.

sample solution: 16 lines of code

13

8 Debugging Skillz | / 14]

For each program bug description below, write the letter of the most appropriate debugging skill to use to
solve the problem. Each letter should be used at most once.

A) get a backtrace E) examine different frames of the stack

B) add a breakpoint F) reboot your computer

C) use step or next G) use Dr Memory or Valgrind to locate the leak
D) add a watchpoint H) examine variable values in gdb or lldb

A complex recursive function seems to be entering an infinite loop,
despite what I think are perfect base cases.

The program always gets the right answer, but when I test it with a complex input
dataset that takes a long time to process, my whole computer slows down.

I’'m unsure where the program is crashing.

I've got some tricky math formulas and I suspect I've got an order-of-operations error
or a divide-by-zero error.

I'm implementing software for a bank, and the value of a customer’s bank account is
changing in the middle of the month. Interest is only supposed to be added
at the end of the month.

Select one of the letters you did not use above, and write 3-4 well-written sentences describing of a specific
situation where this debugging skill would be useful. You are encouraged to describe a personal anecdote.

14

9 It’s all Downhill from Here! [16 pts | (0,0)

Write a recursive function named downhill that takes in 4 arguments: grid, é 271256

start, end, and path. It searches the 2D grid of elevations, an STL vector of 553345

STL vectors of integers, for a path from a start location to an end location. 3996534

Each step along the path can go up, down, left, or right, but each step must have 487672

a lower elevation value than the current position. If it finds a valid downhill path 334661

from start to end, the function stores the path (an STL vector of locations) and 1

returns true, otherwise it returns false. (4,5)

// A Location on the grid
class loc { For the example shown above right, if start is (3,1) and end is

public: (0,2), then this is a valid downhill path:
loc(int r, int c) :
row(r), col(c) {} (3,1) (3,2) (3,3) (2,3) (1,3) (0,3) (0,2
int row; Note: There may be multiple valid downhill paths from start

) int col; to end, and your function may choose any of these valid paths.

sample solution: 16 lines of code

15

10 The Dynamic Tetris Slide [35 pts |

Our implementation of the Tetris game for Homework 3 only allowed pieces to drop vertically. The full game
rules also allow pieces to move horizontally, which can be used by a skilled player to tuck in underneath an
“overhang”. In this problem we will extend our solution with the slide function that allows the square
piece, the '0’ piece, to slide one space to the right. For this problem you don’t need to worry about sliding
any other piece shape, or about sliding to the left.

Below are two example Tetris games showing how this function works.

L|L ll L
slide(1,2) slide(1,3) 1 slide(2,1) -
|__!I!I!__| —> —> FIFI T|T|T —> T|T|T
| | | | | | | I | | | | T T
013310 011330 011133 044550 004550
The representation for the Tetris class consists of 3 private L||L
member variables: data, heights, and width. The memory 0|10 L
layout for the 4th diagram above is shown to the right. Remember 019 L
Lo T[T |T
that we must maintain the arrays to be exactly as long as T
necessary to store the blocks on the board. The space character
is used to represent empty air underneath a block. data: o
The slide function takes in 2 integers, the row and column of .
the lower left corner block of the square 0’ piece that we want to heights: | 0| 4] 4| 5| 5| 0

slide. width: 6

We will also implement the can_slide function which first tests whether a piece is able to slide to the right.
It will return false if the O’ piece at the specified row and column is already at the right edge of the board,
e.g., calling can_slide(1,4) in the third image above returns false. It will return false if the O’ piece at
the specified row and column is blocked by another piece on the board, e.g., calling can_slide(2,2) in
the 5th image above will return false.

10.1 Algorithm Analysis [5 pts |

Assume that the game board has width w, the height of the tallest column is h, and the number of blocks
(total number of piece characters and space characters) is b. What is the Big O Notation for the running
time of your can_slide and slide functions that you have implemented on the next two pages? Write
two to three concise and well-written sentences justifying your answers.

can_slide:

slide:

10.2 can slide Implementation [12 pts |

bool Tetris::can_slide(int row, int column) const {

// First, let's do some error checking on input arguments

// and the current board state. This will help when we need
// to debug this new function. Write if/else statements

// and/or assertions to verify your assumptions.

16

sample solution: 8 lines of code

// Now, we can do the logic necessary to determine whether this piece

// can slide to the right.

sample solution: 6 lines of code

17

10.3 slide Implementation [18 pts]

void Tetris::slide(int row, int column) {
assert (can_slide(row,column) == true);

sample solution: 26 lines of code

18

11 Lightning Round | 13 pts |

std::vector<std::string> a;
std::list<std::string> b;
// omitted: initialize both containers to hold n = a large number of words

01 a.push_front("apple");

02 b.push_front("banana");

03 a.push_back("carrot");

04 b.push_back("date");

05 std::vector<std::string>::iterator itr_a = a.begin();
06 std::list<std::string>::iterator itr_b = b.begin();
07 itr_a = a.insert(itr_a,"eggplant");

08 itr_a += 5;

09 itr_a = a.erase(itr_a);

10 itr_b += 5;

11 itr_b = b.insert(itr_b,"eggplant");

12 ++itr_b;

13 itr_b = b.erase(itr_b);

14 a.sort();

15 Db.sort();

16 std: :sort(a.begin(),a.end());

17 std::sort(b.begin(),b.end());

Which lines result in a compilation error?

Which lines cause a segmentation fault?

Which lines have a memory leak?

Which lines run in O(1) time?

Which lines run in O(n) time?

Which lines run in O(n log n) time?

Which lines run in O(n?) time?

19

12 Button Up the Linked Grid | 26 pts |

Alyssa P. Hacker and Ben Bitdiddle are working
on a team project based on the linked grid of
Nodes data structure from Homework 5. Alyssa
suggests they start with the print_perimeter
function, which takes in a pointer to a Node
named start, and walks around the edge of
the grid in a clockwise direction. The function
should print the value stored in every Node
visited.

For example, print_perimeter (start) for the

diagram shown on the right will print this

sequence of values to the screen:
BCDHLKJIEA

Alyssa says it’s ok to assume that the grid is
at least two rows tall and at least two columns
wide and that start definitely points to a Node
somewhere on the edge/perimeter of the grid.

template <class T> class Node {

public:
T value;
Node<T> *up,*down,*left,*right;
};
start
NULL NULL NULL NULL
T ol Bl T
up: up: up: u 1,
NULL 7]3 < P .. » Up » UP K NULL
=] = = = & = = =
T A 5 5 B = 5 C & 5 D =
<L 2 L & R o < 2
down: down: down down:
T e T
up: up: »| up: » up: [
NULL .. . -
E = & = & = & =
3 E & s F = 5 G s H &
2 o 2 = 2 : 2
down down: down: down:
Nl Bl Nl Nl
. | up: > up: - up: up: - UL
' & = & = = = & =
T I = T J T K & s L =
= E=) = =i
down: | down: | down down: |
NULL NULL NULL NULL

12.1 Implement print _perimeter [12 pts]

sample solution: 16 lines of code

20

Meanwhile, Ben is working on a function named rebutton, which takes in 2 arguments: start, a pointer
to a Node on the top edge of the grid and a bool shift_up. The function makes a vertical cut to the right
of start and reconnects the Nodes on either side of the cut shifted up (below left) or shifted down (below
right) one row. Ben claims that calling rebutton(start,true) followed by rebutton(start,false) will

restore the original grid. And vice versa.

start NULL 4]

NULL NULL

g left: ‘_g.

]

=]
right: |

right: |
g left: ‘é

]

> NULL

R —

1
P

f—1—

NULL *

g left:'5
>
right: |
g left:'5
=
right: |

8
8

g left: ‘_g

Q

right: |

8

g left: ‘g

B

> NULL

right: |

e —

e

1
.

g —
g —

INUSTS

right: | []
&3]
right: |

g left: |5
g left: |5

B

g left: ‘.fé

=
B

right: |

g left: "f:q

> NULL

right: |

f—1—
—t—

g —]

INUSTS

right: |

g left: 5

«—

NULL

> NULL

-«

NULL

12.2

-«

NULL

Implement rebutton [14 pts |

start
NULL NULL
T
up: 1 fup: 1,
NULL ‘*fp ”47713 o NULL
& = =] =
T A s B &
2 2 2
down: ‘ down: ‘ NULL NULL
T T T T
up: _1_Jjup: _1_jup: _1_,jup: 1
NULL * 7713 o %fp .. %fp .. %fp o NULL
& = & = & = £ =
s E = s F o 5 C = s D &
2 = 2 = 2 = = X
- — - -
down: down: | down: | down:
Al Al Al Al
up: | up: _ up: _ up: _
NULL 477[3 - ,:’,p = ,:’,p = ,:’,p T Nu
& = & = & = = =
s I = s J 5 G & s H 5
2 8 2 B 2 2 2 2
down: | down: | down: | down: |
Bl ol
NULL NULL ilp — ,Ep —— UL
NULL - = et =
EK® 3L 35
=i =)
down: down:

«—
«—

NULL NULL

sample solution: 28 lines of code

21

13 Recursive Maximum Coin Path [23 pts] end

Write a recursive function named max_coin_path that searches a 2D grid of v
o .. 00003
coins”, an STL vector of STL vector of non-negative integers, for a path back 01000
to the origin (0,0). In walking from the start location (lower right corner of grid)
. . 00200
to the origin (upper left corner), the path is only allowed to move up or left one 00100
grid space at a time. The goal is to find a path that mazimizes the sum of the 1
coins along the path. The function should return the maximum sum. start
class Location { For the example shown above right, the path
Location(int r, int c) collects coins with values 1 + 2 + 1 = 4, which is the maximum coin sum
: row(r),col(c) {2} that can be achieved on this grid. The path achieving that sum should
int row; be stored in the second argument passed to the function, an STL 1ist of
) int col; Locations named path. Note: there are a few similar paths that have the

same sum. Your function may return any of these optimal paths.

13.1 Usage [2 pts |

You will implement the max_coin_path on the next page. But first, complete the initial call to the
max_coin_path function below. Assume grid has already been initialized; for example, with the data
shown above. What additional information does your function need to get started?

std::1list<Location> path;
int max_coin_sum = max_coin_path(grid,path,)R

13.2 Algorithm Analysis [5 pts |

Assume that the grid width and height are w and h respectively, the number of non-zero coins in the grid
is ¢, and the value of the maximum coin is m. What is the Big O Notation for the running time of your
answer on the next page? Write three to four concise and well-written sentences justifying your answer.

22

13.3 Implementation [16 pts |

Now implement the max_coin_path function. Remember: it should be recursive.

sample solution: 27 lines of code

23

	 The Combo (list + vector) Data Structure [26 pts]
	 Member Variables of Combo Data Structure [4 pts]
	 Write operator[] for Combo Data Structure [3 pts]
	 Copy Constructor for Combo Data Structure [15 pts]
	 Disadvantages of Combo Data Structure [4 pts]

	 Nested List Sentence [25 pts]
	 Write print_sentence [7 pts]
	 Write a silly sentence editor [12 pts]
	 Big O Notation [6 pts]

	 Recursive Reach [18 pts]
	 Playing with Examples [6 pts]
	 Painting Recursively [12 pts]

	 Jenga Block Merge [28 pts]
	 Write Jenga::MergeBlocks [28 pts]

	 Mock Interview Practice [28 pts]
	 Quick but Flawed [14 pts]
	 Preserving the Sequence [14 pts]

	 Clown Car Data Structures [25 pts]
	 Drawing [9 pts]
	 Implementation [16 pts]

	 ``Missing'' dslist Iterator Operators [14 pts]
	 Debugging Skillz [/ 14]
	 It's all Downhill from Here! [16 pts]
	 The Dynamic Tetris Slide [35 pts]
	 Algorithm Analysis [5 pts]
	 can_slide Implementation [12 pts]
	 slide Implementation [18 pts]

	 Lightning Round [13 pts]
	 Button Up the Linked Grid [26 pts]
	 Implement print_perimeter [12 pts]
	 Implement rebutton [14 pts]

	 Recursive Maximum Coin Path [23 pts]
	 Usage [2 pts]
	 Algorithm Analysis [5 pts]
	 Implementation [16 pts]

