CSCI-1200 Data Structures
Test 3 — Practice Problems

Note: This packet contains selected practice problems from Test 3 from three previous years.
Your test will contain approximately one third as many problems (totalling ~100 pts).

1 Recursing Breadth-First Fruit Tree Traversal [38 pts |

Louis B. Reasoner is verifying the output of his company’s breadth- banana

first traversal code for fruit trees. Each node in the tree can have /\

zero or more children, and the tree will never have duplicate items. kiwi /apyple\
Remember that in a breadth-first traversal the children at each Che‘rry orange grape plum
level can appear in any order. So both of the following orderings T \
are valid breadth-first traversals of this sample tree: strawberry mango lemon fig raspberry

banana kiwi apple cherry orange grape plum strawberry mango lemon fig raspberry
banana kiwi apple plum grape cherry orange mango lemon strawberry raspberry fig

The Fruit node class is on the right. Louis class Fruit {
proposes we write three helper functions plus the public:
overall is_breadth_first function. Your task is Fruit(const std::string &v) { value = v; }

std::string value;
std::vector<Fruit*> children;

};

to implement these functions and analyze the Big
O Notation for memory & running time.

1.1 Counting [3 pts]

Before we jump into the code... How many different valid breadth-first traversal orderings are there for
the sample tree shown above? Write 1-2 sentences justifying your answer.

a)2 b)12 ¢)24 d)60)74 f)144 g) 1440 h) 6024 i) 12! j) other

1.2 Helper Function num appearances [7 pts]

Implement a recursive function num_appearances with two required arguments: an STL string and an
STL vector of STL strings. A third optional argument with a default value facilitates the recursive
implementation. The function returns the number of times the string argument appears within the vector.

sample solution: 6 lines of code

For a vector

with v strings: Big O Notation for memory: running time:

1.3 Helper Function everything appears_once [7 pts |

Next, implement a recursive helper function everything appears_once that takes two arguments: a
pointer to the root Fruit node and an STL vector of STL strings. The function should return true if
every element in the tree appears exactly once in the vector and false otherwise.

sample solution: 8 lines of code

For a tree with n nodes
and height h, and Big O Notation for memory: running time:
a vector with v strings:

1.4 Helper Function which level [7 pts |

Write recursive function which_level that takes two arguments: a pointer to a Fruit node and an STL
string. The function returns an integer indicating on which level of the tree the string is located: where
0 is the root, 1 is a direct child of the root, etc. The function returns -1 if the string is not in the tree.

sample solution: 9 lines of code

For a tree with n

nodes and height h: Big O Notation for memory: running time:

1.5 Implement is breadth first [10 pts]

Finally, implement the is_breadth_first function that takes two arguments: a pointer to the root Fruit
tree node and a candidate breadth-first ordering stored as an STL vector of STL strings. The function
returns true if the ordering it is a valid breadth-first traversal of the tree and false otherwise. It should use

(directly or indirectly) all of the helper functions you defined above.

sample solution: 11 lines of code

1.6 Analyze is breadth first Memory and Running Time [4 pts |

What is the overall Big O Notation for the memory usage and running time of your is_breadth_first
function? Assume the Fruit tree has n nodes and height h, and the proposed traversal order has v == n
elements. Write 2-3 concise and well-written sentences justifying your answer.

2 Enhanced Tree Copy [13 pts]

Write a function named EnhancedCopy that takes in a
pointer to the root of a tree built with Basic nodes,
and returns a pointer to the root of a copy of that
tree made with Enhanced nodes. Enhanced nodes
have pointers to their parents and also to their sibling
nodes. In the example tree below: nodes 2 & 6 are
siblings; nodes 1& 3 are siblings; and nodes 4 and 5
do not have siblings.

4
/\
2 6
N /
1 3 5

template <class T> class Basic {
public:
Basic(const T& v): value(v),
left(NULL), right(NULL) {}
T value;
Basicx left;
Basic* right;

};

template <class T> class Enhanced {
public:
Enhanced(const T& v): value(v),parent(NULL),
left (NULL) ,right (NULL) ,sibling(NULL) {}
T value;
Enhanced* parent;
Enhancedx* left;
Enhanced* right;
Enhanced* sibling;

sample solution: 14 lines of code

3 Spicy Chronological Sets using Maps |

/ 33]

Ben Bitdiddle is organizing his spice collection using an STL set but runs into a problem. He needs the
fast find, insert, and erase of an STL set, but in addition to organizing his spices alphabetically, he also

needs to print them out in chronological order (so he can replace the oldest spices).

Ben is sure he’ll have to make a complicated custom data structure, until Alyssa P. Hacker shows up and
says it can be done using an STL map. She quickly sketches the diagram below for Ben, but then has to

dash off to an interview for a Google summer internship.

Alyssa’s diagram consists of 3 variables. The first variable, containing most of the data, is defined by a
typedef. Even though he’s somewhat confused by Alyssa’s diagram, Ben has pushed ahead and decided

on the following interface for building his spice collection:

chrono_set cs;

std::string oldest = "";

std::string newest = "";
insert(cs,oldest,newest,"garlic");
insert(cs,oldest,newest, "oregano") ;
insert(cs,oldest,newest, "nutmeg") ;
insert(cs,oldest,newest,"cinnamon") ;
insert(cs,oldest,newest,"basil");
insert(cs,oldest,newest, "sage");
insert(cs,oldest,newest,"dill");

Ben would like to output the spices in 3 ways:

ALPHA ORDER: basil cinnamon dill
OLDEST FIRST: garlic oregano nutmeg
NEWEST FIRST: dill sage basil

If he buys more of a spice already in the collection, the old spice jar should be discarded and replaced. For
example, continuing the example above, after calling:

insert(cs,oldest,newest,"cinnamon") ;

The spice collection output should now be:

ALPHA ORDER: basil cinnamon dill
OLDEST FIRST: garlic oregano nutmeg
NEWEST FIRST: cinnamon dill sage

3.1 The typedef |

/3]

(.
chrono_set cs: | "basil"

non

<"cinnamon", "sage">

"cinnamon"

<"nutmeg", "basil">

"dill"

<”Sage”, nn>

"garlic"

nnon

<"","oregano">

"nutmeg"

<"oregano","cinnamon">

"oregano”

"non

<"garlic", "nutmeg">

n
|'sage

<"basil", "dill">

std::string oldest: "garlic

std::string newest: "dill"

garlic nutmeg
cinnamon basil
cinnamon nutmeg

garlic nutmeg
basil sage
basil nutmeg

First, help Ben by completing the definition of the typedef below:

oregano sage
sage dill
oregano garlic

oregano sage
dill cinnamon
oregano garlic

typedef

chrono_set;

3.2 Printing out the spice collection | / 8]

Next, write the code to output (to std::cout) Ben’s spices in alphabetical and chronological order:

std::cout << "ALPHA ORDER: ";

sample solution: 4 lines of code

std::cout << std::endl;
std::cout << "OLDEST FIRST: ";

sample solution: 5 lines of code

std::cout << std::endl;

3.3 Performance Analysis | /5]

Assuming Ben has n spices in his collection, what is the order notation for each operation? Note: You
may want to first complete the implementation of the insert operation on the next page.

printing in alphabetical order:

printing in chronological order:

insert-ing a spice to the collection:

3.4 Implementing insert for the chrono_set | / 17]

Finally, implement the insert function for Ben’s spice collection. Make sure to handle all corner cases.

sample solution: 26 lines of code

4 FErase Red [13 pts]

Write a function named erase_red that takes one
argument, a pointer to the root of a red-black
binary search tree. The function should erase all
of the red nodes in the tree, and everything in the
right subtree of those red nodes. An example is
shown on the right. NOTE: The red nodes are
shown in grey. You may write a helper function.

BEFORE

6
2
./ \. # h class Node {

4
e

AFTER

public:
int value;
Node *left;
Node *right;
bool red;

sample solution: 18 lines of code

What will be true about the number of nodes in the tree after calling erase_red? Why? Write 1-2

sentences justifying your answer.

5 Reducing Fractions with Pair Maps [30 pts |

Let’s construct a data structure that explicitly stores the correspondence between a fraction and its
2 1

simplified or reduced form (e.g., & — 3). Here’s the code to construct the first of two map data
structures we use in this problem. Note that the STL pair struct interface and implementation does
include the definition of the operator<(const pair &a, const pair &b) function, which returns true
if the first element of a is less than the first element of b, and false if the first element of b is less than
the first element of a. If neither of these is the case, then operator< returns the result of comparing the

second elements of a and b.

typedef ***PART_1x** mapl_type;

mapl_type mapil;

mapl [std: :make_pair(2,4)] = std::make_pair(1,2);
mapl [std: :make_pair(4,8)] = std::make_pair(1,2);
mapl[std: :make_pair(3,6)] = std::make_pair(1,2);
mapl[std: :make_pair(2,6)] = std::make_pair(1,3);
mapl[std: :make_pair(3,9)] = std::make_pair(1,3);
mapl[std: :make_pair(4,6)] = std::make_pair(2,3);
mapl [std: :make_pair(2,8)] = std::make_pair(1,4);

5.1 The mapl Data Type [3 pts |

What is the type for the mapl data structure? Fill in the blank marked ***PART_1%xx.

5.2 Visualizing the Data Structure [6 pts |

Draw a picture to represent the mapl data structure that has been constructed by the commands above.
As much as possible use the conventions from lecture and lab for drawing these pictures. Please be neat
when drawing the picture so we can give you full credit.

Now we’ll convert the data to another format. In the second version, we want to associate the reduced
form of the fraction with one or more unsimplified fractions. Here’s code to declare the second map:

typedef ***PART_3*¥* map2_type; (h
map2_type map2; (1,2) ’ 24 | (3,6) | 4,8 ‘
// code to initialize map2 from the data stored in mapl (1,3) (2,0)]1 (3,9
*x% PART 4 **x*
(1.4) (2,8)
And on the right is a diagram of the map2 data structure
storing the information from the initial example. L 2.3) (4.6))

5.3 The map2 Data Type [4 pts |

What is the type for the map2 data structure? Fill in the blank marked ***PART_3%*x*.

5.4 Map Conversion [8 pts |

Now write the fragment of code to fill in *** PART_4 *x* that converts data stored in the variable map1
into the second map data structure format, storing it in variable map2. Study the example above, but your
code should work for all examples of this type.

sample solution: 3 lines of code

Let’s say the map1 data structure stores n unreduced fractions, but when reduced there are only m different
fractions in reduced form, and the most common reduced form has k unreduced fractions. What is the Big
O Notation for the code you just wrote? Write 2-3 sentences justifying your answer.

10

5.5 Counting using mapl [4 pts |

Write a function named count_reduce_to_mapl that takes 3 arguments: mapl (of type mapl_type), and
2 integers: numer and denom. The function should return the number of fractions stored in the map that

reduce to the fraction F2°0. For example, count_reduce_to_map1(map1,1,3) should return 2.

sample solution: 8 lines of code

In terms of n, m, and k as defined above, what is the Big O Notation for the count_reduce_to_mapl
function? Write 1-2 sentences justifying your answer.

5.6 Counting using map2 [5 pts |

Now, write a very similar function named count_reduce_to_map2 that uses map2 instead of map1.

sample solution: 8 lines of code

What is the Big O Notation for the count_reduce_to_map2? Justify your answer.

11

6 Word BST with Duplicates [20 pts]

Write a function named word_bst that takes
one argument, an STL string named word, and
returns a pointer to the root Node of a binary
search tree created by adding the characters of the
input word in order. The tree will allow duplicate
characters. When a repeated character is added,
it is added to both the left and the right subtrees.

You should write a helper function and your
solution should use recursion.

class Node {
public:
char value;
Nodex* left;
Node* right;
};

crybaby — ¢
/\

sample solution: 21 lines of code

12

7 Constant Memory Breadth-First Traversal [31 pts |

Ben Bitdiddle sat through the Data Structures lecture covering breadth-first tree class Node {
traversal and is determined to implement a constant memory implementation public:
breadth-first traversal of a perfectly-balanced trinary tree. To meet the constant- int value;

Nodex left;
Nodex middle;
Node* right;
Below is Ben’s initial implementation. You’ll write the missing functions and Node* parent;
then analyze the algorithm for memory use and running time. i

time memory goal, he realizes this means no vector or list helper variables
may be used, and furthermore, the implementation cannot use recursion.

void BreadthTraversal (Node *root) {
int level = 0;
while (true) {

Node* tmp = FirstNodeOnLevel(root,level); e
if (tmp == NULL) break; 13 26 67
std::cout << "level " << level << ": ";
) ’ P N N
int lgvelfcount f NumNodesOnLevelFlevel); 1 92 65 40 98 48 59 15 44
for (int i = 0; i < level_count; i++) {
std::cout << " " << tmp->value; level 0: 70
tmp = NextNodeOnLevel (tmp) ; ’
} level 1: 43 26 67
std::cout << std::endl; level 2: 1 92 65 40 98 48 59 15 44
level++;
}
}

7.1 Implement and Analyze FirstNodeOnLevel [6 pts |

For the above example, when passed level = (, it returns the Node storing 70. When passed level = 1,
it returns the Node storing 43. When passed level = 2, it returns the Node storing 1, etc.

sample solution: 5 lines of code

For a tree with n nodes: Big O Notation for memory: running time:

7.2 Implement and Analyze NumNodesOnLevel [6 pts]

Implement the NumNodesOnLevel function. Level 0 has 1 node, Level 1 has 3 nodes, etc.

sample solution: 5 lines of code

For a tree with n nodes: Big O Notation for memory: running time:

13

7.3 Implement and Analyze NextNodeOnLevel [16 pts]

Finally implement the NextNodeOnLevel function that moves between nodes on a specific level of the tree.

sample solution: 21 lines of code

For a tree with n nodes: Big O Notation for memory:

For running time, Best Case: For running time, Worst Case:

7.4 Analyze BreadthTraversal | 3 pts |

What is the overall memory usage and running time of the Breadth Traversal algorithm to print the entire
tree? Write 2-3 concise and well-written sentences justifying your answer.

14

8 Tree Overlay [16 pts | t1 — B 22— 1

/\ \
Write a recursive function named overlay that takes in A R 2
two trees, t1 and t2, containing string data. The function — ™~
will overlay and combine the data in the two trees. Where E 4
the shapes of the trees are similar, the value in the t2 Node \D 3/\5

is concatenated to the value in the t1 Node.

As shown in the example to class Node { t1 —B1 2 — null
the right, after the overlay public: o~
function call, the combined std::string value; A R2
tree is stored in the t1 variable goje: l?f;fc‘ P
and the t2 wvariable is an 3 ode® rights E 4
empty tree. ’ NN
D 3 5

sample solution: 15 lines of code

15

9 Spelling Bee Re-Sting [33 pts |

rang
ragtag

Now that we have learned more sophisticated (and raga

efficient!) data structures, let’s revisit the statistics we

grant
computed in Homework 2, for the Spelling Bee game. o

Remember that the goal of the puzzle is to make English gzelull
words using only the 7 letters for the day’s puzzle. And gaga
furthermore, the words must use the center letter, in this gala
example, the letter ‘g’. gnat
While the letter ‘g’ is required to be in every word, it is not necessarily the most frag
frequently appearing letter across all 23 valid words in the solution. In fact, in gaff
this example, the letter ‘a’ appears 33 times, and the letter ‘g’ only appears 26 tang
times. Our goal in this problem is to print the following statistics for a specific fragrant
Spelling Bee puzzle: flag
fang
The letter(s): 'f' & 't' appear 8 times. alga
The letter(s): 'l' & 'n' appear 11 times. graft
The letter(s): 'r' appear 12 times. gnarl
The letter(s): 'g' appear 26 times. algal
The letter(s): 'a' appear 33 times. flagrant
The letter(s): 'f' appear in 7 words. gang
The letter(s): 'l' & 't' appear in 8 words. gallant
The letter(s): 'n' & 'r' appear in 11 words. agar

The letter(s): 'a' & 'g' appear in 23 words.

To get started, carefully study the code below that reads the solution words from an input file stream named
istr. It prepares two structures named frequency_of_total_usage and frequency_of_use_in_words
that can be simply printed to the screen as shown above. The details of the code to print these variables
is is omitted from this problem.

total_uses_type total_uses;
used_in_words_type used_in_words;

// read in each solution word from the input file

std::string s;

while (istr >> s) {
used_letters_type letters_in_this_word = collect_letters(s);
increment_total_uses(total_uses, s);
increment_used_in_words(used_in_words, letters_in_this_word);

}

// prepare the frequency statistics for printing
frequency_of_total_usage_type frequency_of_total_usage;
frequency_of_use_in_words_type frequency_of_use_in_words;

for (total_uses_type::iterator tu = total_uses.begin(); tu != total_uses.end(); tu++) {
frequency_of_total_usage[tu->second] .insert (tu->first);

}

for (used_in_words_type::iterator uw = used_in_words.begin(); uw != used_in_words.end(); uw++) {
frequency_of _use_in_words [uw->second] .insert (uw->first);

}

You will fill in some of the missing pieces of this implementation on the next few pages.

16

9.1 Complete these Bee Sting typedefs [5 pts]

IMPORTANT: In this problem, you are not allowed to use C-style arrays, STL vector, STL list, or any

classes that create “homemade” versions of these containers.

typedef

typedef

typedef

typedef

typedef frequency_of_total_usage_type

total_uses_type wused_in_words_type;

used_letters_type;

total_uses_type;

frequency_of_total_usage_type;

frequency_of_use_in_words_type;

9.2 Can you Picture This? [5 pts]

Using conventions from lecture, draw a diagram of the variable letters_in_this_word immediately after
we process the 2nd word in this example solution, ragtag. Also draw the data stored in the total_uses
and used_in_words variables after processing the first two words from the solution file, rang and ragtag.

letters_in_this_word

total_uses

used_in_words

9.3 Implement collect_letters [7 pts |

sample solution: 7 lines of code

17

9.4 Implement increment total uses [6 pts |

sample solution: 5 lines of code

9.5 Implement increment_used in words [7 pts]

sample solution: 7 lines of code

9.6 And Now Paint the Complete Picture [3 pts |

Again using conventions from lecture, draw diagrams for the data stored in the frequency_of_total_usage
and frequency_of_use_in_words structures after the entire input file is processed and these structures
are prepared for printing.

frequency_of_total_usage frequency_of_use_in_words

18

10 Lightning Doesn’t Strike Out Twice [20 pts |

In this problem we declare the following three container objects, and fill the containers with a very large
number (n) of English words, represented as STL strings. The code for filling the structures is omitted.

std::vector<std::string> my_vec;
std::list<std::string> my_list;
std: :set<std::string> my_set;

Below we call the do_it function with each version of the data. Assume that k is a positive integer and
k << n. For each numbered line of the function, for each of these container objects, either:

e Indicate that the syntax is incorrect for the container and will not compile by drawing an X’ in the
box. You should then assume this line is commented out for that container. OR

e Specify the Big O Notation for that line in terms of k and/or n.

do_it(my_vec); do_it(my_list); do_it(my_set);
template <class T> void do_it(T &d) {

01 d.sort();

02 std::sort(d.begin(),d.end());

03 d.push_front ("FIRST_THING");

04 d.push_back("LAST_THING");

T::iterator itr;

05 itr = d.end();

06 for (int i = 0; i < k; i++) { itr——; }

o7 itr -= k;

08 itr

d.insert(itr,"A_MIDDLE_THING");

09 itr = std::find(d.begin(),d.end(),"the");

10 itr = d.find("the");

assert (itr != d.end());

11 itr = d.erase(itr);

12 std::cout << d.size() << std::endl;

19

11 Unbalanced Tree Pruning [20 pts |

Write a function named keep_longest that takes as
input a pointer to the root of a binary tree, and removes
all of the nodes in the tree except the nodes that form the
longest path from root to leaf node. You are encouraged
to write helper function(s) as needed.

10 10
/\ \
/}5 //Q\\ /}?
—
25 7 28 7
NN N
3 12 3
/ /
16 16

class Node {
public:

int value;
Node *left;
Node *right;
};

sample solution: 24 lines of code

20

12 Leaf Counting Construction [15 pts]

Write a function named create_tree that takes one
argument, a positive integer named num_leaves and returns
a pointer to the root Node of a binary tree that has the
specified number of leaves and is at least approximately
balanced. In addition to the number of leaves beneath it,
each Node should also store the length of the longest and

parent:

num_leaves: 2
shortest: 1
longest: 1

left:

parent:
num_leaves: 3

shortest: 1

longest: 2
left:

right:

parent:
num_leaves: 1
shortest: 0
longest: 0

left: /right: /

right:

N

shortest paths from that node to a leaf node.
You may write the constructor for the Node class.

class Node {

parent:
num_leaves:
shortest: 0
longest: 0
left: /right:

1

/

parent:
num_Jleaves: 1
shortest: 0
longest: 0

left: /right: /

public:

int num_leaves;
int shortest;
int longest;
Node *parent;
Node *left;
Node *right;

sample solution: 16 lines of code

21

13 Tree Traversal Bingo [9 pts]

For each of the diagrams below, write a letter corresponding to one of the following statements that
accurately describes the diagram. Each letter should be used exactly once.

(A) has post-order traversal: 1234567
B) is not a tree
D) is a binary search tree

has breadth-first traversal: 765432 1

)
(B)
(C) has in-order traversal: 547 16 2 3
(D)
)
F)

(E
(

cannot be colored as a red-black tree

13.1
v 13.2

7

/ \ 1/3 \2 4/6 \5

2 5
2 NN
1 3 6

13.4

1 RN
T~ 3 7

A A .

13.3

1 5
13.5
1 13.6
2/ \3 6/ 7\5
\ /
[T ANA
4 3 2 1

22

	 Recursing Breadth-First Fruit Tree Traversal [38 pts]
	 Counting [3 pts]
	 Helper Function num_appearances [7 pts]
	 Helper Function everything_appears_once [7 pts]
	 Helper Function which_level [7 pts]
	 Implement is_breadth_first [10 pts]
	 Analyze is_breadth_first Memory and Running Time [4 pts]

	 Enhanced Tree Copy [13 pts]
	 Spicy Chronological Sets using Maps [/ 33]
	 The typedef [/ 3]
	 Printing out the spice collection [/ 8]
	 Performance Analysis [/ 5]
	 Implementing insert for the chrono_set [/ 17]

	 Erase Red [13 pts]
	 Reducing Fractions with Pair Maps [30 pts]
	 The map1 Data Type [3 pts]
	 Visualizing the Data Structure [6 pts]
	 The map2 Data Type [4 pts]
	 Map Conversion [8 pts]
	 Counting using map1 [4 pts]
	 Counting using map2 [5 pts]

	 Word BST with Duplicates [20 pts]
	 Constant Memory Breadth-First Traversal [31 pts]
	 Implement and Analyze FirstNodeOnLevel [6 pts]
	 Implement and Analyze NumNodesOnLevel [6 pts]
	 Implement and Analyze NextNodeOnLevel [16 pts]
	 Analyze BreadthTraversal [3 pts]

	 Tree Overlay [16 pts]
	 Spelling Bee Re-Sting [33 pts]
	 Complete these Bee Sting typedefs [5 pts]
	 Can you Picture This? [5 pts]
	 Implement collect_letters [7 pts]
	 Implement increment_total_uses [6 pts]
	 Implement increment_used_in_words [7 pts]
	 And Now Paint the Complete Picture [3 pts]

	 Lightning Doesn't Strike Out Twice [20 pts]
	 Unbalanced Tree Pruning [20 pts]
	 Leaf Counting Construction [15 pts]
	 Tree Traversal Bingo [9 pts]
	
	
	
	
	
	

