
CSCI–6280 Mobile Robotics, Spring 2005
Assignment 1: out Thursday January 27, due February 17

GPS simulation

For this assignment, you and a partner will write two programs: a “satellite” program that simu-
lates the transmissions of GPS satellites to a GPS receiver, and a “receiver” program that calculates
the receiver’s position from the satellite transmissions. The first program entails simply doing
some coordinate transformations and calculating satellite positions. The second program involves
implementing the Newton-Raphson method for finding the roots of a set of nonlinear equations.

Another part of this assignment is to evaluate the error of the position calculated by the receiver.
We will be making some simplifying assumptions, so there will be only three types error: satellite
clock synchronization, ephemeris (satellite position), and “other errors.”

I will ask you to turn in your code and a written report containing some documentation and
your results. Details are provided in this handout and will be clarified as necessary.

Implementation notes

You may implement this assignment in any programming language you choose, so long as I am
able to (compile and) run your code. I don’t do Windows, so if you do your work on Windows,
make sure it is compatible with language implementations on UNIX (SunOS) or Linux. In order to
simplify cross-platform compatibilty, all required I/O will be through files.

You are to implement the Newton-Raphson method yourselves, however I encourage you to
look for and use (and properly cite) code for other parts of this assignment. For example, should
should find code for solving a system of linear equations instead of writing it yourself. Matrix
representations and manipulation code would be another thing to look for.

You and your partner will, of course, collaborate. I encourage you to share information with
other teams (e.g., about finding a linear equation solver), but there should be no detailed discussion
of implementation or results with other teams. General discussions about the project (including
general discussion about implementation or results) is fine. Needless to say, no team may share
any code that they have written with another team.

Please ask me if there is any need for clarification on the above.

1 Background

1.1 Coordinate frame

The coordinate frame we will use is an Earth Centered Earth Fixed (ECEF) cartesian coordinate
frame. The z axis is coincident with the axis of rotation of the Earth. The x axis is set so that the xz
plane passes through the prime meridian, i.e., longitude 0. This coordinate frame is right handed,
and the origin of the frame is at the center of the Earth.

GPS computes latitude, longitude, and altitude based on the WGS 84 (1984 World Geodetic
System) “reference ellipsoid.” This is a somewhat idealized model of the Earth’s shape; because of
this, GPS altitudes are not necessarily correct with respect to the “geoid.”

For our purposes, the main implication is the difference between geocentric latitude (φc in the
figure below) and geodetic latitude (φ).



φ

re

cφ

pr

z

h
π/2+φ

β

r WGS-84 ellipsoid parameters

re Equatorial radius 6378137 m
rp Polar radius 6356752.3142 m
ε First eccentricity 0.0818191908426

The eccentricity is defined as:

ε =

√

1 −

r2
p

r2
e

To convert from geodetic latitude φ, altitude h, and longitude λ on the WGS-84 ellipsoid, to coor-
dinates in the ECEF frame, you can use the following equations:

x =





re
√

1 −ε2 sin2 φ

+ h



 cosφ cos λ (1)

y =





re
√

1 −ε2 sin2 φ

+ h



 cosφ sin λ (2)

z =





re(1 −ε2)
√

1 −ε2 sin2 φ

+ h



 sinφ (3)

I will leave the conversion from the cartesian coordinates to latitude, longitude, and altitude as an
exercise.

1.2 Satellites

Since we are operating in the ECEF frame, the orbital planes of the satellites will appear to rotate
relative to the Earth. We will compute the satellite position by the equation:

~x = Rot(ẑ, −
2π t

pe
)(re + a)

[

~u cos(
2π t

ps
+θ) +

√

1 − e2~v sin(
2π t

ps
+θ)

]

(4)

where Rot(·, ·) produces a left operator that rotates a vector, and the constants and variables are
defined as follows:

t Time (seconds)
pe Period of Earth’s rotation (seconds)
ps Period of satellite’s orbit (seconds)
a (Equatorial) altitude of satellite’s orbit (m)
e Eccentricity of satellite’s orbit
θ Phase of the satellite (rad)
~u,~v Vectors defining an orbital plane
re Equatorial radius of the Earth (m)

The parameters that are not part of the WGS-84 model (or the problem input) will be specified in a
parameter file. Also note that we will require a satellite to be at least 15 degrees above the horizon
in order to view/use it.

2



2 Programs

2.1 Satellite program

Your “satellite” program should read a file named satinput.dat that contains a position (in
latitude-longitude coordinates) and a time (in seconds). For example:

42 43 50.0
-73 40 55.0
68.58
600.0

This corresponds to 42◦ 43’ 50.0” north latitude, 73◦ 40’ 55.0” west longitude, an altitude of 68.58
meters (225 feet), and (assuming t = 0 is midnight) 10:00 in the morning. (This location corresponds
approximately to the Amos Eaton / Sage area of campus.) The time specified here will be the time
at the receiver (not of a satellite) when the satellites transmit their message.

Your program will also need to read a file containing parameters for the satellites. This file will
be available on the course web page.

Your program should write a file called gpsxmit.dat that contains the information from all
satellites visible at least 15 degrees above the horizon. Note that there may be more than four such
satellites. This file should contain one line for each visible satellite of the form:

<i> <X> <Y> <Z> <t_s> <t_r>

where i is the satellite number (an integer), (X, Y, Z) are the satellite coordinates in the ECEF frame
(real numbers, in meters), and tr is the satellite’s time (a real number, in seconds) when the satellite
transmitted the message, and tr is the time on the receiver’s clock when the message was received
(a real number, in seconds).

The satellite time ts should be computed by adding a random offset to the receiver’s time spec-
ified in the input file. This offset should be the same for all satellites; however, later in this assign-
ment you will be adding error to the satellite time for each satellite.

The time that the receiver gets the message tr should be the starting time at the receiver (given
in the input file) plus the time for the message to reach the receiver: the distance from the satellite
to the receiver divided by the speed of light (2.99792458× 108 m/s).

2.2 Receiver program

Your receiver program should read the gpsxmit.dat file, calculate the receiver’s position, and
write it to a file named gpsloc.dat. The format of this file should be:

<x> <y> <z>
<lat-deg> <lat-min> <lat-sec>
<long-deg> <long-min> <long-sec>
<altitude>
<time>

where (x, y, z) are the ECEF coordinates in meters. Note that the number of seconds should be a
real number.

Recall, that you need to solve a system of nonlinear equations, each of the form:

ρ̃ =
√

(X − x)2 + (Y − y)2 + (Z − z)2 + c∆tr (5)

where ρ̃ is the pseudorange, c is the speed of light, and ∆tr is the receiver’s clock offset. This system
of equations can be written:

~̃ρ = ~F(x, y, z, c∆tr) = ~F(~x) (6)

3



Note that there may be more than four equations here.
You will use the Newton-Raphson method to iteratively solve for ~x. You will need to give it an

initial guess ~x0, and then you can iteratively compute estimates of the solution with:

~xi+1 = ~xi + J−1(F(~x) − ~̃ρ) (7)

3 Error characterization

Modify your programs to add error to the satellite’s transmissions. There are three types of error
you should add:

• satellite clock error — this reflects the fact that the satellite clocks are not perfectly synchro-
nized. This error is added to ts.

• ephemeris (satellite position) error — this reflects the fact that the satellite will not know its
position exactly. This error is added to (X, Y, Z)

• other error — here, we will collect atmostpheric error, multipath error, etc. The effect of all
these errors is to increase the amount of time that the signal takes to reach the receiver. This
error is added to tr.

You will probably find it convenient to put error parameters into a configuration file so you don’t
have to recompile your code.

Characterize the error of the position estimate at the receiver. Perhaps the easiest way to do this
is to run a large number of trials and compute statistics on the resulting positions.

Note that the errors in different directions will not be independent, though you may simply
compute overall statistics on each axis separately. You may find it useful to transform your position
estimates into an “east-north-up” coordinate frame. Also keep in mind that the geometry of the
satellites relative to the receiver also affects the error (and the geometry of the satellites will be
different at different times).

4 Writeup

In addition to turning in your code, you will turn in a 5–10 page writeup that covers the following
points:

• Provide instructions for me to compile and run your code.

• Discuss the convergence of the Newton-Raphson method. Be sure to include how your initial
position estimate affects convergence. Did the method ever “blow up” or converge to an
incorrect solution? How did you address these problems?

• Discuss what kind (and how much) error you added to the satellte messages. How did you
characterize the resulting error in position estimated by the receiver? Give an analysis of the
receiver positioning error, including statistics/data from your tests.

4


