

IPsec: Security Across the Protocol Stack

Brad Stephenson CSCI NetProg

Network Security

- There are application specific security mechanisms (eg. S/MIME, PGP, Kerberos, SSL/HTTPS)
- But there are security concerns that cut across protocol layers
- Can we implement security in the network for all applications?

What is IPsec?

- A collection of tools and algorithms (protocols)
- General IP security mechanisms
- It provides
 - authentication
 - confidentiality
 - key management

Services Provided by IPsec

- Authentication ensure the identity of an entity
- **Confidentiality** protection of data from unauthorized disclosure
- Key Management generation, exchange, storage, safeguarding, etc. of keys in a public key cryptosystem

IPsec Services (detailed)

- Access control
- Connectionless integrity
- Data origin authentication
- Rejection of replayed packets
- Confidentiality (via encryption)
- Some traffic flow confidentiality (firewall to firewall)

Benefits of IPsec

- If implemented in a firewall or router, provides strong security to all traffic crossing the perimeter
- Resides below the transport layer, hence transparent to application layer
- Can be transparent to end users
- Note: Mandatory for IPv6 implementations

AH and ESP

- Authentication Header (AH) provides:
 - Data integrity
 - Authentication of IP packets
 - Prevents replay attacks
- Encapsulating Security Payload (ESP):
 - Data confidentiality
 - Some traffic flow confidentiality
 - Authentication services of AH (optional)

Authentication Header (AH)

- Provides support for data integrity & authentication of IP packets
 - end system/router can authenticate user/app
 - prevents address spoofing attacks by tracking sequence numbers
- Based on use of a MAC
 - HMAC-MD5-96 or HMAC-SHA-1-96
- Parties must share a secret key

Authentication Header

Encapsulating Security Payload (ESP)

- Provides message content confidentiality & limited traffic flow confidentiality
- Can optionally provide the same authentication services as AH
- Supports many ciphers, modes, padding
 - DES, Triple-DES, RC5, IDEA, CAST, others

Encapsulating Security Payload

Security Associations (SAs)

- A *one-way* relationship between sender & receiver that affords security for traffic flow
- Defined by 3 parameters:
 - Security Parameters Index (local identifier)
 - IP Destination Address
 - Security Protocol Identifier (AH or ESP)
- Each implementation of IPsec must keep a database of SAs

Combining Security Associations

- SAs can implement either AH or ESP
- To implement both need to combine SAs into a security bundle

Combining Security Associations

Transport vs. Tunnel Mode

• Transport mode

- data protected but header left in clear
- can do traffic analysis but is efficient
- good for ESP host to host traffic
- Tunnel mode
 - add new header for next hop
 - hides end-host IP addresses through insecure networks
 - good for VPNs, gateway to gateway security

Transport & Tunnel Modes

(b) A virtual private network via Tunnel Mode

Figure 16-8, W. Stallings

So you wanna try it?

- Implemented in OS kernel
- Non-trivial to understand

So you wanna try it?

• Linux

- racoon
- openswan (openswan.org)
- Free S/WAN (freeswan.org)
- Unix
 - man **ipsec**
- Windows
 - mmc (Microsoft Management Console)

Linux

- Must specify a security policy in kernel
 - Who do you trust?
 - racoon
 - Key management daemon
- Free S/WAN
 - IPsec implementation for Linux
- openswan
 - Another IPsec implementation for Linux

Unix

- IPsec policy is enforced in the **ip**(**7P**) driver for system-wide policy
- Use **ndd** to alter /dev/ip at the system level
- Or specify per-socket options

Unix Socket Options

#include <sys/socket.h>
#include <netinet/in.h>
#include <net/pfkeyv2.h>

/* socket setup */
rc = setsockopt(sock, IPPROTO_IP, IP_SEC_OPT,
 (const char *)&ipsec_req, sizeof (ipsec_req_t));

ipsec_req

typedef struct ipsec_req { uint_t ipsr_ah_req; /* AH request */ uint_t ipsr_esp_req; /* ESP request */ uint_t ipsr_self_encap_req; /* Self-Encap request */ uint8_t ipsr_auth_alg; /* Auth algs for AH */ uint8_t ipsr_esp_alg; /* Encr algs for ESP */ uint8_t ipsr_esp_auth_alg; /* Auth algs for ESP */ } ipsec_req_t;

Windows XP

- Type **mmc** at a command line
- Add snap-in IPsec Policy
- Edit the policy as you see fit

Summary

- IPsec is a collection of protocols that provide low-level network security
- Last specification was in 1998, currently being revised as Internet Draft
- Required for IPv6
- Currently the most popular use is for implementing VPNs

References

- *RFC 2401* "Security Architecture for the Internet Protocol"
- *Internet Draft*, Dec 2004, "Security Architecture for the Internet Protocol"
- *Cryptography and Network Security*, W. Stallings, Chap. 16 "IP Security"
- Internetworking with TCP/IP Vol. 1, D. Comer, Chap. 32 "Internet Security"

ERROR: undefined OFFENDING COMMAND:

STACK: