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1 η-Conversion

Consider the expression
(λx.(λx.x2 x) 3).

Using β-reduction, we can take E = (λx.x2 x) and M = 3. In the reduction we only replace the one x
that is free in E to get

β→ (λx.x2 3).

We use the symbol
β→ to show that we are performing β-reduction on the expression (As another example

we may write λx.x2 α→ λy.y2 since α-renaming is taking place).
Another type of operation possible on lambda calculus expressions is called η-conversion (“eta”-reduction

when applied from left to right). We perform η-reduction using the rule

λx.(E x)
η→ E.

η-reduction can only be applied if E is a lambda expression taking a single argument, and x does not
appear free in E.

Starting with the same expression as before, (λx.(λx.x2 x) 3), we can perform η-reduction to obtain

(λx.(λx.x2 x) 3)
η→ (λx.x2 3),

which gives the same result as β-reduction. In the following example, there is no redex, but we can perform
η-reduction.

λx.(y x)
η→ y.

η-reduction can be considered a program optimization. For example, consider the following Oz defini-
tions:

declare Increment = fun {$ X} X+1 end

declare Inc = fun {$ X} {Increment X} end

Using η-reduction, we could reduce {Inc 6} to {Increment 6} avoiding one extra-function call. This
compiler optimization is also called inlining.

η-conversion can also affect termination of expressions in applicative order expression evaluation. For
example, the Y reduction combinator has a terminating applicative order form that can be derived from
the normal order combinator form by using η-conversion (see Section 2.2.)
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2 Combinators

Any lambda calculus expression with no free variables is called a combinator. Because the meaning of a
lambda expression is dependent only on the bindings of its free variables, combinators always have the
same meaning independently of the context in which they are used.

There are certain combinators that are very useful in lambda calculus:
The identity combinator is defined as

I = λx.x.

It simply returns whatever is given to it. For example

(I 5)⇒ (λx.x 5)⇒ 5.

The identity combinator in Oz can be written:

declare I = fun {$ X} X end

Contrast it to, for example, a Circumference function:

declare Circumference = fun {$ Radius} 2*PI*Radius end

The semantics of the Circumference function depends on the definitions of PI and *. It is, therefore,
not a combinator.

The application combinator is
App = λf.λx.(f x),

and allows you to evaluate a function with an argument. For example

((App λx.x2) 3)
⇒ ((λf.λx.(f x) λx.x2) 3)
⇒ (λx.(λx.x2 x) 3)
⇒ (λx.x2 3)
⇒ 9.

The sequencing combinator is
Seq = λx.λy.(λz.y x)

where z is chosen so that it does not appear free in y.
This combinator guarantees that x is evaluated before y, which is important in programs with side-

effects. Assuming we had a “display” function sending output to the console, an example is

((Seq (display “hello”)) (display “world”))

2.1 Currying Combinator

The currying combinator takes a function and returns a curried version of the function. For example, it
would take as input the Plus function, which has the type

Plus : (Z× Z)→ Z.

The type of a function defines what kinds of things the function can receive and what kinds of things it
produces as output. In this case Plus takes two integers (Z× Z), and returns an integer.
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The definition of Plus in Oz is

declare Plus =
fun {$ X Y}

X+Y
end

The currying combinator would then return the curried version of Plus, called PlusC, which has the
type

PlusC : Z→ (Z→ Z).

Here, PlusC takes one integer as input and returns a function from the integers to the integers (Z → Z).
The definition of PlusC in Oz is

declare PlusC =
fun {$ X}

fun {$ Y}
X+Y

end
end

The Oz version of the currying combinator, which we will call Curry, would work as follows:

{Curry Plus} ⇒ PlusC.

Using the input and output types above, the type of the Curry function is

Curry : (Z× Z→ Z)→ (Z→ (Z→ Z)).

So the Curry function should take as input an uncurried function and return a curried function. In Oz, we
can write Curry as follows:

declare Curry =
fun {$ F}

fun {$ X}
fun {$ Y}

{F X Y}
end

end
end

This may seem very much like the definition of the PlusC function. But is the PlusC function a combinator?
No, because the function + is a free variable. Remember that the definition of a combinator is that it has
no free variables. In Oz, the + operator is considered a procedure that is defined in the Number module
and can be accessed as Number.‘+‘. This operator has a specific behavior, making this code specific, not
universal. So it is crucial in the definition of the currying combinator that the + function be changed to
a generic function F, which can be set to any function you like. The Curry function has no free variables,
and therefore is a combinator.

2.2 Recursion Combinator

The recursion combinator allows recursion in lambda expressions. For example, suppose we want to
implement a recursive version of the factorial operation,

n! =
{

1 if n = 0
n(n− 1)! if n > 0 .
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We could start by attempting to write a the recursive function f in the lambda calculus (assuming it
has been extended with conditionals, and numbers):

f : λgλn(if (= n 0)
1
(∗ n (g (− n 1)))).

This function does not work yet because it does not receive a single argument. Before we can input an
integer to the function, we must input a function to satisfy g so that the returning function is the desired
factorial. Let’s call this function X. Looking within the function, we see that the function X must take an
integer and return an integer, that is, its type is Z → Z. The function f will return the proper recursive
function with the type Z → Z, but only when supplied with the correct function X. Knowing the input
and output types of f , we can write the type of f as

f : (Z→ Z)→ (Z→ Z).

What we need is a function X that, when applied to f , returns the correct recursive function.
We could try applying f to itself, i.e.

(f f).

This does not work, because f expects something of type Z → Z, but it is taking another f , which has
the more complex type (Z → Z) → (Z → Z). A function that has the correct input type is the identity
combinator, λx.x. Applying the identity function, we get

(f I)⇒ λn.(if (= n 0)
1
(∗ n (I (− n 1))))

⇒ λn.(if (= n 0)
1
(∗ n (− n 1))),

which is equivalent to

f(n) =
{

1 if n = 0
n ∗ (n− 1) if n > 0 .

We need to find the correct expression X such that when X is applied to f , we get the recursive factorial
function. It turns out that the X that works is

X : ( λx.(λg.λn.(if (= n 0) 1 (n (g (− n 1)))) λy.((x x) y))
λx.(λg.λn.(if (= n 0) 1 (n (g (− n 1)))) λy.((x x) y))).

Note that this has a structure similar to the non-terminating expression

(λx.(x x) λx.(x x)),

and explains why the recursive function can keep going.
X can be defined as (Y f) where Y is the recursion combinator,

(f X)⇒ (f (Y f))⇒ (Y f).

The recursion combinator that works for an applicative evaluation order is defined as

Y = λf.( λx.(f λy.((x x) y))
λx.(f λy.((x x) y))).

The same combinator that is valid for normal order is

Y = λf.( λx.(f (x x))
λx.(f (x x))).

How do we get from normal ordering to applicative order? Use η-expansion (that is, η-conversion in
reverse). This is an example where η-conversion can have an impact on the termination of an expression.
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Exercises

1. η-reduce the following λ-calculus expressions, if possible:

(a) λx.(λy.x x)

(b) λx.(λy.y x)

2. Use η-reduction to get from the applicative order Y combinator to the normal order Y combinator.

3. Prove that (f (Y f))⇒ (Y f).
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