
CSCI–4190 Introduction to Robotic Algorithms, Spring 2006
Assignment 2: out February 13, due February 23 and March 2

Localization and the extended Kalman filter

In this assignment, you will write a program that simulates the motion of a mobile robot and keeps track of
the uncertainty in its configuration. Actually, I’ve already written most of it for you. You will just need to
add the stuff that properly estimates the robot’s pose based on its odometry and sensing.

In the first part of the assignment, the robot will execute only movement commands; the uncertainty
in the robot configuration will increase due to accumulated errors from executing each movement. In the
second part of the assignment, the robot will have a simulated laser rangefinder to measure the distance
to an obstacle in a given direction. We assume the robot has a map, so it can compare the sensor reading
with the expected value (based upon the current estimated robot configuration). You will implement an
extended Kalman Filter (EKF) to merge this uncertain measurement with the current estimate of the robot
configuration.

There will be one or two written questions for this assignment due on February 23. No late papers will
be accepted for these questions because I will hand out solutions in class for these problems. Your program
(and some additional written questions) will be due on March 2.

Support code libraries

The support code will make use of the dolt-lite library, as before. For this assignment, there is one more
library: SVL (the Simple Vector Library). This library provides classes to represent vectors and matrices as
well as mathematical operations, in particular the matrix inverse. See the assignment information page (off
the course home page) for information on the SVL library.

1 Program operation and interaction

The support code for this assignment as working program that reads the problem specification files and
already implements all the stuff that you need to display on the screen, albeit with “dummy” values. The
things that are drawn on the screen (in addition to the world boundary and obstacles) are:

• the robot in its current estimated position and orientation (also include a point at the reference point
of the robot)

• a 95.4% confidence limit on the robot’s position (using an ellipse) and on the robot’s orientation (using
a cone)

• a path from the start, through all previous estimated final positions, to the current estimated position

• a point at the robot’s true position and a line segment showing its true orientation

After this point, the user should be able to press ’q’ to quit or ’n’ to execute the next command. There are
two types of commands: a “move” command and a “sense” command.

• If the command is a “move” command, then your program should:

– Give the commanded motion to the robot simulator

– Compute an updated estimate of the robot configuration based on the commanded motion

– Update the display for the new configuration estimate and uncertainty

• If the command is a “sense” command, then your program should:

– Display the beam from the robot (i.e. a line of the appropriate length in the proper direction from
its current estimated configuration).
Since the robot is not where it thinks it is, the end of this line will either not reach an obstacle or
will intersect an obstacle.

– Compute a revised estimate of the robot configuration and its uncertainty.
– Wait for the user to press ’n’ again, and then update the display.

The beam should be removed from the display, and the last point of the robot path should be
changed to the current estimated position.

Your program should also print a narrative of its calculations to cout. For example:

==>The robot moved: distance=1.75, angle=90
Current state estimate is (x, y, th) = (1.10114, -1.25, 86.0965)
New state estimate is (x, y, theta) = (1.22095, 0.505793, 181.969)
New state covariance matrix is:
[[0.0300499 -0.000998142 -0.00991148]
[-0.000998142 0.00375455 0.000676311]
[-0.00991148 0.000676311 0.0362557]]

True state is (x, y, th) = (1.15, 0.5, 180.000)
Uncertainty ellipse is:

minor radius is 0.131259
major radius is 0.35163
orientation is 169.91084 degrees
2*sigma_theta is 12.44284 degrees

==>Commanding the robot to sense at an angle of 90
The range is 2.00572

The predicted range was 2.00698
The derivatives are:

dh/dx = 0, dh/dy = 1.00059, dh/dth = 0.0689879
Revised state estimate: (x, y, theta) = (1.22157, 0.504722, 181.936)
Revised covariance matrix is:
[[0.0203742 0.0134885 -0.00853237]
[0.0134885 0.0301436 -0.0188613]
[-0.00853237 -0.0188613 0.0181603]]
Uncertainty ellipse is:

minor radius is 0.0481291
major radius is 0.343865
orientation is 75.51344 degrees
2*sigma_theta is 10.01445 degrees

Don’t use the above numbers to test your program — I just made up at least some of them!

2 Simulated robot operation

The support code will provide a simple robot simulator. The motion commands to the robot will be a
forward straight motion followed by a turn in place (about the reference point). The forward distance and
turning angle are the parameters for a command.

2

The robot, however, does not execute the commanded motion perfectly. It adds some Gaussian noise to
the commanded motion and updates the actual configuration of the robot accordingly. For this assignment,
the parameters of the commanded motion are not relevant. We are trying to recover the true robot pose,
i.e., how the robot actually moved, using only the odometry and the sensing.

The odometry gives a measurement of the actual motion of the robot but with some Gaussian noise
added. The width of these Gaussian distributions depends on the magnitude of the motion, i.e., smaller
motions have less error. We will assume that the standard deviation (sigma) of the Gaussian is propor-
tional to to magnitude of the motion command. The constants of proportionality are given in the problem
specification file:

executionDstSigmaRatio
executionAngSigmaRatio
odometryDstSigmaRatio
odometryAngSigmaRatio

For example, if odometryDstSigmaRatio is 0.02, then for an actual motion of d = 10 m, the Gaussian
random noise of the odometry measurement would have a standard deviation of σd = 0.2 m. You should
assume that the error in distance for the forward motion and the error in angle for the turn are independent.

This robot will be equipped with a simulated a laser rangefinder. There is one parameter to a sensing
command: the angle (relative to the forwards direction of the robot) in which to point the laser rangefinder.
We will assume that the sensor is pointed exactly at the specified angle. The simulated robot will calculate
the sensor reading using the true robot pose but will add some noise to this reading. This is done by the
getRange method. The amount of this noise is controlled (in a similar way to the odometry noise) by the
parameter rangeSigmaRatio.

In order to apply the EKF, you will need to predict what the sensor reading should be based upon your
current estimated pose of the robot. This is done by the predictRange method. There is no noise added
to this predicted value.

3 The extended Kalman filter

The state of the robot will be the vector x = [x y θ]T and the motion command will be the input vector
u = [d a]T , where d is the distance and a the angle as measured by the odometry. We will not use
the commanded distance or angle at all. Assume that the robot first translates a distance d (at its current
heading) and then rotates an angle a.

We have assumed that there is noise associated with the input u, so we must represent this using the
covariance matrix:

Pu =
[

σ2
d σda

σad σ2
a

]
(1)

At each step, we will maintain an estimate of the state, notated x̂(k) for step k. To characterize its uncer-
tainty, we maintain an associated state covariance matrix (here, also for step k):

Px(k) =

 σ2
x σxy σxθ

σyx σ2
y σyθ

σθx σθy σ2
θ

 (2)

At the beginning, when we know the robot’s configuration exactly, the elements of the state covariance
matrix are all zero.

3

3.1 Compounding

We use Φ to represent the function that calculates the next state as a function of the current state estimate
and the input. Our model of the system is:

x(k + 1) = Φ[x(k), u(k)] (3)

Note that this differs slightly from the usual formulation of the extended Kalman filter in that there is no
additional noise term w(k). This is because we are assuming that there is noise associated with the elements
of u(·) instead.

At step k, we have an estimate of the state x̂(k) and its covariance Px(k). To update the estimate, we
compute:

x̂(k + 1|k) = Φ[x̂(k), u(k)] (4)

Recall that x̂(k + 1|k) is a preliminary estimate of the new state after the motion command at step k.
In order to compute the covariance of this preliminary estimate, we must linearize the system. The first

order approximation to Φ about the current state estimate is:

Φ[x, u] ≈ Φ[x̂(k), u(k)] + Jx(x − x̂(k)) + Ju(u − u(k)) (5)

where Jx and Ju are the Jacobians of Φ:

Jx =

∂Φx
∂x

∂Φx
∂y

∂Φx
∂θ

∂Φy
∂x

∂Φy
∂y

∂Φy
∂θ

∂Φθ
∂x

∂Φθ
∂y

∂Φθ
∂θ

 Ju =

∂Φx
∂d

∂Φx
∂a

∂Φy
∂d

∂Φy
∂a

∂Φθ
∂d

∂Φθ
∂a

 (6)

Note that these Jacobians should be evaluated at x̂(k) and u(k).
The preliminary state covariance can then be computed as:

Px(k + 1|k) = JxPx(k)JT
x + JuPu(k)JT

u (7)

If there is no measurement after the motion, then this preliminary estimate becomes the final state estimate
at step k + 1, i.e. x̂(k + 1) = x̂(k + 1|k) and Px(k + 1) = Px(k + 1|k).

3.2 Merging

When we do have a measurement at step k, this information must be incorporated into the state estimate
and its covariance. We assume that this measurement process can be modeled by the equation:

z = H[x] + v(k) (8)

The H function computes the sensor value from the state, and v is a random variable representing the noise
in the measurement. In our problem, the measurement z will be a scalar, the measured range from the
sensor.

We compute the error between the actual measurement z(k) and the predicted measurement (without
noise) based on our best estimate of the state:

r(k + 1) = z(k + 1)− H[x̂(k + 1|k)] (9)

Now we can compute the final state estimate at step k

x̂(k + 1) = x̂(k + 1|k) + K(k + 1)r(k + 1) (10)

4

where K(k + 1) is the Kalman gain:

K(k + 1) = Px(k + 1|k)JT
H(JH Px(k + 1|k)JT

H + Cv)−1 (11)

Here, JH is the Jacobian of the H function and Cv is the covariance matrix for the measurement noise. The
new state covariance matrix is:

Px(k + 1) = (I − K(k + 1)JH)Px(k + 1|k) (12)

Note that the predictRange method will return the values of the derivatives that you need for the Jaco-
bian JH .

4 Miscellaneous notes

• For orientation uncertainty, assume that this is a 1-dimensional Gaussian with variance σ2
θ ; the 95.4%

confidence limit is the interval ±2σθ about the mean.

• For position uncertainty, take the upper left 2 × 2 submatrix of Px. See the notes, Section 5.1.10, for
information on how to calculate ellipse parameters from this covariance matrix.

• I suggest you adopt the following convention: all internal representation of angles should be in ra-
dians, all external representations (e.g. when printed to the screen or read from a file) should be in
degrees.

5

